9th Math full book

 


UNIT 1 




a.

 

Q.  Who did give the idea of matrices? 

     09301001

Q.  Define matrix.               09301002

Q.  Define Row and column of a matrix.

      09301003

Q. Define order of a matrix. Give example.

              09301004

Q.  Define equal matrices.       09301005



 



 

1. Find the order of the following matrices.       09301006

2. Which of the following matrices are equal?                      09301007

A = [3] ,    

  ,    

  ,          

  ,

    

3. Find the values of a, b, c and d which satisfy the matrix equation.       09301008

 

Q.  Define row matrix.       09301009

Q.  Define column matrix.       09301010

Q.  Define rectangular matrix.       09301011

Q.  Define square matrix. Give example.  

09301012

Q. Define null or zero matrix. (Board 2014)       

09301013

Q.  Define transpose of a matrix.       09301014

   

Q.  Define negative of a matrix.       09301015

Q.  Define symmetric matrix.     09301016

Q. Define skew-symmetric matrix.09301017

Q. Show that  is skew symmetric matrix.       09301018

Q.  Define diagonal matrix. (Board 2013)

      09301019

Q.  Define Scalar Matrix. (Board 2014)   09301020

Q.  Define Identity Matrix.       09301021


 



 

Q.1 From the following matrices, identify unit matrices, row matrices, column matrices and null matrices.                   09301022

Q.2 From the following matrices, identify

(a) Square matrices       09301023

(b) Rectangular matrices       09301024

(c) Row matrices       09301025

(d) Column matrices       09301026

(e) Identity matrices       09301027

(f) Null matrices       

3. From the following matrices, identify diagonal, scalar and unit (identity) matrices.                         09301029

 

,

,

,

 

4. Find negative of matrices A, B, C, D and E when:                   09301030

   , 

   

5. Find the transpose of each of the following matrices:              09301031

Q.6 Verify that if     then               09301032

(i) (At)t = A                             09301033

(ii) (Bt)t = B                            09301034

Q.  What is condition for addition and subtraction for matrices? 09301035

Q. How can we add matrices?      09301036

Q.  How can we subtract a matrix from other matrix?       09301037

Q. How can we multiply a matrix by a real number?       09301038

Q.  If A   then find  

Q.  Define Commutative Law of addition of Matrices.       09301040

Q.  If  and  

Then verify that A + B = B + A 09301041

Q. Define Associative Law of addition.

      09301042

Q.  If     and    09301043

Then verify that (A+B) + C = A+ (B+C)

Q. Define additive identity of a matrix.

09301044 

Q. If   and     09301045

then show that O is additive identity of A

Q. Define additive inverse of a matrix.

      09301046

Q. If the find its additive inverse and verify.       09301047

 


 

Q.1 Which of the following matrices are conformable for addition?        09301048

  09301049          09301050

  09301051    ,  09301052

 , 09301053  09301054

Q.2 Find the additive inverse of following matrices.

             (Board 2013)         09301055

               09301056

                        09301057

        09301058

Q.3 If    

 , then find,

(i)    09301059 (ii)       09301060

(iii) C+ 09301061  

(iv)  09301062   (v) 2A                09301063

(vi) (1)B 09301064   (vii) (2)C         09301065

(viii) 3D         09301066    (ix) 3C               09301067

Q.4 Perform the indicated operations and simplify the following.          

(i)        09301068

(ii)       09301069

(iii)       09301070

(iv)            09301071

(v)         09301072

(vi)                09301073

Q.5 For the matrices     and   verify the following rules.       09301074

(i)            09301075

(ii)            09301076

(iii)            09301077

(iv)            09301078

(v)               09301079

(vi)            09301080

(vii)            09301081

(viii)     09301082

(ix)            09301083

(x)            09301084

Q.6  If   and  , find

(i) 3A2B  09301085     (ii) 2At  3Bt.       09301086

Q. 7 If     then find a and b. 09301087

Q.8  If     then verify that                   09301088

(i) (A+B) t = At + Bt              09301089

(ii)               09301090

(iii)   is symmetric          09301091

(iv)   is skew symmetric        09301092

(v)   is symmetric               09301093

(vi)   is skew symmetric          09301094

Q. Write condition for multiplication of matrices.       09301095

Examples

(i) If   and   then find AB       09301096

 (ii)If   and   then find AB       09301097

Q. Define associative law of multiplication.

09301098

Q. If     

Then verified that (AB)C=A(BC).       09301099

Q. Define distributive laws of multiplication over addition. 09301100

Q.  If     and   then verify that                09301101

Q. Define distributive laws of multiplic-ation over subtraction.       09301102

Q. If     and   then verify that 

                09301103

Q. If     and 

      then verify that     

(A – B) C = AC – BC               09301104

Q. If   and     then 

Show that AB   BA       09301105

Q. In general which property does not exist in matrices? 09301106

Q.  If  and   then show that AB = BA               09301107

Q. Define multiplicative identity of a matrix. 09301108

Q. If  ,  , then show that AB = A = BA               09301109


Q. Define Law of Transpose of product of matrices.       09301110

Q. If  and  

then show that (AB)t  = Bt At 09301111

 



 

Q.1 Which of the following product of matrices is conformable for multiplication?            

      09301112

(i)

        09301113

                 09301114

        09301115

              09301116

Q.2 If  ,  , find 

                09301117

(i) AB       09301118  

(ii) BA (if possible).       09301119

Q.3 Find the following products.

                09301120

                    09301121

                   09301122

                    09301123

             09301124

Q.4 Multiply the following matrices.

        09301125

          09301126

          09301127

 (Board 2015)

09301128

                09301129

Q.5 Let , and  . Verify whether               09301130

(i) AB = BA.       09301131

(ii) A(BC) = (AB)C       09301132

(iii) A(B+C)=AB+AC       09301133

(iv) A(BC)=ABAC       09301134

Q.6 For the matrices.                      09301135

 , ,  

Verify that

(i)(AB)t= BtAt  09301136  (ii)(BC)t=CtBt.    09301137

Q. Define determinant of a matrix.  

09301138

Q. If  . Then find |B|       09301139

Q.  If  , then find det M    09301140

Q. Define singular and non-singular matrix. (Board 2014)   09301141

Q. How can we find adjoint of a matrix?

      09301142

Q.  What do you know about multiplicative inverse of a matrix?       09301143

Q. If  be a square matrix. Then find  .                          09301144

Q. If  then find A–1 and check.

      09301145

Q. Define law of inverse of product of matrices. 09301146

Q.  If  and  

Then verify that (AB)1 = B1 A1            09301147

 


 

Q.1 Find the determinant of the following matrices.           09301148

               

                09301149

 (iii)   (Board 2015)           09301150

 (iv)               09301151

Q.2 Find which of the following matrices are singular or non-singular?                            09301152

           


             09301153

                        09301154

                    09301155

Q.3 Find the multiplicative inverse  

(if it exists) of each.       09301156                      

                      09301157

                  09301158

   

                      09301159

Q.4 If and  , then 

(i) A(Adj A) = (Adj A) A = (det A )I     09301160

(ii) BB–1 = I = B1 B           09301161

Q.5 Determine whether the given matrices are multiplicative inverses of each other.

  and        09301162  

 and        09301162

Q.6 If  ,  ,  , then verify that     

(i) (AB)1 = B1 A1                09301163

(ii) (DA)1 = A1 D1                09301164

a. Q.  Define System of Simultaneous Linear Equation.

b. Q.  Write different methods to solve the simultaneous linear equation by using matrices. 09301166

Q.  By using matrices inverse method find the solution of system of linear equations.    09301167

Example 1 09301168

Solve the following system by using matrix inversion method.

4x  2y = 8

3x + y = 4

Example 2       09301169

Solve the following system of linear equations by using Cramer’s rule.

3x  2y = 1,  2x +3y = 2

Example 3       09301170

The length of a rectangle is 6 cm less than three times its width. The perimeter of the rectangle is 140 cm. Find the dimensions of the rectangle.

(by using matrix inversion method)


 




Exercise 1.6


 

Q.1 Use matrices, if possible, to solve the following systems of linear equations by:

(i) the matrix inverse method       09301171

(ii) the Cramer’s rule.       09301172

Solution by Matrix inverse method

(i) (Board 2013)       09301173

 

 (ii)                     09301174

 

(iii)                 09301175

 

 (iv) (Board 2014)                09301176

 

 (v)                   09301177

 

(vi)                   09301178

 

 (vii)                 09301179

 


(viii)                     09301180

 

Solution by Cramer’s rule 

(i)   (Board 2013, 14)           09301181

 

(ii)             09301182

 

 (iii) (Board 2015)              09301183

 

(iv)          09301184

 

 (v)               09301185

 

(vi) (Board 2014)        09301186

            

 (vii) (Board  2015)          09301187

 


 (viii)               9301188

 

Solve the following word problems by using:        

(i) Matrix inversion method       09301189

(ii) Cramer’s Rule                  09301190

Q.2   The length of a rectangle is 4 times its width. The perimeter of the rectangle is 150cm. Find dimensions of the rectangle.

Let width of rectangle = x. 09301191

and length of rectangle   = y

Q.3 Two sides of a rectangle differ by 3.5cm. Find the dimensions of the rectangle if its perimeter is 67cm.            09301192

(i) By Matrix inversion method       09301193

x – y = 3.5

x + y = 33.5

(ii) By Cramer’s Rule:        09301194

x – y = 3.5           ……………… (i)

x + y = 33.5         ……………...(ii)

Q.4 The third angle of an isosceles triangle is 16o less than the sum of the two equal angles. Find three angles of the triangle.        09301195

Let third angle of triangle = y

Two equal angles of triangle = x

(i)   By Matrix Inversion Method:        09301196

In matrices form

         

Q.5 One acute angle of a right triangle is 12o more than twice the other acute angle. Find the acute angles of the right triangle.        09301198

Let acute angles of right angled triangle are x and y 

According to given condition

 

                     

We know that

                      …………(ii)

Q.6 Two cars that are 600 km apart are moving towards each other. Their speeds differ by 6km per hour and the cars are 123 km apart after   hours. Find the speed of each car.                  09301200

   

 



OBJECTIVE  

Q.1  Select the correct answer in each of the following. 

 

1. The order of matrix [2   1] is …    09301201

(a) 2-by-1 (b) 1-by-2   (Board 2014)

(c) 1-by-1 (d) 2-by-2

2.  is called ……. Matrix.    09301202

(a)  zero (b) unit        (Board 2014)  

(c)  scalar (d) singular

3. Which is order of a square matrix?09301203

(a)   2-by-2 (b) 1-by-2  

(c)   2-by-1 (d) 3-by-2

4. Which is order of a rectangular matrix?                   09301204

(a)   2-by-2 (b) 4-by-4

(c)   2-by-1 (d) 3-by-3

5. Order of transpose of   is … 

 09301205

(a)   3-by-2     (b) 2-by-3 (Board 2014)  

(c)   1-by-3     (d) 3-by-1


6.  Adjoint of  is ………           09301206

(a)     (b)  

(c)   (d)  

7. If  , then x  is equal to              09301207

(a) 9 (b) –6        (Board 2013)

(c) 6      (d)  –9

8. Product of [x    y]   is ……..

(Board 2013, 15) 09301208

  (a)  

(b)  

  (c)

(d)  

9.               09301209

(a) (b)  

    (c) (d)  

10. The idea of a matrices was given by:__

(a) Arthur Cayley 09301210

(b) Leonard Euler

    (c) Henry Briggs

(d) John Napier

11. The matrix M=[ 2 – 1    7 ] is a--matrix.

    (a) Row (b) Column 09301211

(c) Square (d) Null

12. The matrix is a ____ matrix.

  (a) Row (b) Column   09301212

(c) Square (d) Null

13. The matrix  is a _______ matrix.       

(a) Rectangular (b) Square  09301213  

(c) Row (d) Column

14. The matrix  is a __ matrix.

    (a) Rectangular    (b) Square      09301214

    (c) Row     (d) Column

15. If A is a matrix then its transpose is denoted by: 09301215

(a) A-1 (b) At

(c) – A (d) (At)t

16. If  then A = ______     09301216

(a) (b)  

(c) (d)  

17. A square matrix is symmetric if ___

(a) At  = A (b) A-1 = A         09301217

(c) (At)t= At    (d) At = – A 

18. A square matrix is skew-symmetric if:

(a) At = A (b) A-1 = A      09301218

(c) (A)t= At (d) At = A

19. The matrix  is a _ matrix. 

    (a) Diagonal (b) Scalar 09301219

(c) Identity (d) Zero

20. The matrix  is a__matrix.

(a) Diagonal (b) Scalar       09301220

(c) Identity (d) Zero

21. The matrix  is a _ matrix. 

  (a)    Diagonal     (b) Identity  09301221 

(c) Zero (d) None

22. The scalar matrix and identity matrix are ____ matrices. 09301222

(a) Diagonal (b) Rectangular

(c) Zero            (d) None

23.Every diagonal matrix is not a _ matrix.

(a) Square             09301223

(b) non-singular 

(c) Scalar or identity 

(d)   None 

24. If A, B are two matrices and At, Bt are their respective transpose, then:       09301224

(a) (AB)t = Bt At  (b) (AB)t = At Bt

(c) At Bt = AB (d) None

25. If   then the det. A is:  09301225

(a) ad – bc (b) bc – ad 

(c) ad + bc (d) bc  + ad

26. A square matrix A is called singular if

(a) |A|  0 (b) |A| = 0       09301226

(c) A = 0 (d) At = 0

27. A square matrix A is called 

non-singular if:       09301227

(a) |A| = 0 (b) A = 0

(c) |A|  0 (d) At = 0


28. Inverse of identity matrix is _matrix.

(a) Identity (b) Zero       09301228

(c) Rectangular (d) None

29.   AA1 = A1 A = _____       09301229

(a) Identity matrix

(b) Rectangular matrix

(c) Zero matrix

(d) Singular matrix

30.    (AB)1 = ____               09301230

(a) A1 B1 (b) B1 A 1

(c) BA (d) AB

31.   Additive inverse of   is ____

(a)   (b)          09301231

(c) (d)  

32. Which of the following is commutative property of addition of matrices?

(a) 09301232

(b)       

(c)  

(d)  

33.Which of the following is associative property of multiplication of matrices? 

09301233

(a) (b)   

(c) (d)  

34. Which of the following is commutative property of multiplication of matrices?

(a)

(b)          09301234

(c)  

(d)  

35. Which of the following is associative property of addition of matrices?

(a) 09301235

(b)   

(c)  

(d)  


36. Which of the following does not exist in matrices in general? 09301236

(a) (b)    

(c)  

(d)  

37. Which of the following is true for matrices in general? 09301237

(a)  

(b)    

(c)   

(d)  

38. Which of the following is distributive property of multiplication over addition?

(a) 09301238

(b)    

(c)    

(d)    

39. Which of the following is singular matrix? 09301239

(a) (b)    

(c)     (d)    

 


 

Q.2 Complete the following:

i.   is called……matrix.          09301240

(Null / Zero)

ii.   is called…….matrix.       09301241

(Identity /Unit) 

iii. Additive inverse of   is… 09301242

 

iv. In matrix multiplication, in general, 

AB …… BA.         09301243

v. Matrix A + B may be found if order of A and B is ……     (Same)       09301244

vi. A matrix is called …. matrix if number of rows and columns are equal.        09301245    (Square)

Q.3 If   , then find a and b.   (Board 2013, 14)       09301246

Q.4 If , , then find the following.               09301247

(i) 2A + 3B

 (ii) 3A +2B 

              09301248

 (iii) – 3 (A+2B)       09301249

 (iv)       09301250

Q.5 Find the value of X, if .            09301251

Q.6 If  ,  , then prove that   AB  BA       09301252

Q.7  If   and  , then verify that       09301253

(i) (AB)t = Bt At       09301254

(ii) (AB)1 = B1 A1          09301255


Q8. If , then find x.

09301256

Q9. Find the product  .

09301257

Q10.  If   find X. 09301258


 

 


UNIT 2



b.

 

Q. Define Natural Numbers.     09302001

Q. Define Whole Numbers. (Board 2013)   09302002

Q. Define the set of Integers?     09302003

Q. Define Rational Numbers.     09302004

Q. Define Irrational Numbers.     09302005

Q. Define Set of Real Numbers.     09302006

Q. What is one to one correspondence? 

   09302007

Q. What is convention of number line?

    09302008

Q. Define Terminating Decimal Fractions.

09302009

Q. Define Recurring and Non-terminating Decimal Fractions.     09302010

Q. What is decimal representation for Irrational Numbers?    09302011

Q. How can we represent a rational number on number line?     09302012

    09302013

Express the following decimals in the form  , where p, q  Z and q  0

(a)   = 0.333 …. (b)   = 0.232323

 

 




       09302014

Represent the following numbers on the number line.

(i)

(ii) (Board 2015)

(iii)   

Q. How can we represent an Irrational Number on a Number Line?           09302015


2.

3. Exercise 2.1:

 

Q.1 Identify which of the following are rational and irrational numbers.  09302016

(i)

(ii)

(iii)  

(iv)

(v)

(vi)

Q.2 Convert the following fractions into decimal fraction.     09302017

(i)     09302018

 (ii)     09302019

 (iii)       09302020

 (iv)       09302021

 (v)       09302022

 (vi)     09302023

Q.3 Which of the following statements are true and which are false?       09302024

(i)   is an irrational number.    09302025

(ii)   is an irrational number.   09302026

(iii)   is a terminating fraction. 09302027

(iv)   is a terminating fraction. 09302028

(v)   is a recurring fraction.     (09302029

Q.4 Represent the following numbers on the number line.     09302030

(i)      09302031

(ii)      9302032

(iii)      9302033

iv)     09302034

(v)     09302035

(vi)     09302036

Q.5 Give a rational number between   and  .

Q6. Express the following recurring decimals as the rational number   where p, q are integers and q  0

(i)  (Board 2013)     09302038

(ii)     09302039

 (iii)     09302040

 

4. Exercise 2.2:


 

Q.1 Identify the property used in the following.     09302041

(i)       09302042

(ii) (ab)c = a(bc)     09302043

(iii) 71=7     09302044

(iv) x > y or x=y or x<y    0930204

(v) ab = ba    09302046

(vi)    09302047

(vii)    09302048

(viii)    09302049

(ix)    09302050

Q.2   Fill in the following blanks by stating the properties of real numbers used. 

          09302051

Q.3 Give the name of property used in the following.

(i)   09302052

(ii) 09302053

(iii)          09302054

(iv)    09302055

(v)     

5. Exercise 2.3:


 

Q1. Write each radical expression in exponential notation and each exponential expression in radical notation. Do not simplify. 

    09302057

(i)     09302058

(ii)    09302059

(iii)     09302060

(iv)     09302061

Q2. Tell whether the following statements are true or false?    09302062

(i)    09302063

(ii)    09302064

(iii)    09302065

(iv)    09302066

Q3. Simplify the following radical expressions.    09302067

(i)    09302068

 (ii)    09302069

 (iii)    09302070

(iv) (Board 2013)         9302071

Q. Define Base and Exponent.     09302072

Q. Write laws of exponents.     09302073

Example 1:     09302074

Use rules of exponents to simplify each expression and write the answer in terms of positive exponents. 

(i)   

Example 2:     09302075

Simplify the following by using laws of indices:

(i)         (Board 2015)

(ii)         (Board 2014)


 



Exercise 2.4

 

Q.1  Use laws of exponents to simplify     09302076

(i) (Board 2013)     09302077

(ii)     09302078

 (iii)     09302079

 (iv)  (Board 2014)

   09302080

Q.2 Show that     09302081

 

Q.3 Simplify      (Board 2014)                 09302082

(i)                 09302083

(ii)   09302084

 (iii)     09302085

iv) (Board 2013, 14)     09302086

Q. Define a Complex Number.     09302087

Q. Define Pure Imaginary Number.    09302088

Q. Define Set of Complex Numbers.    09302089

Q. Define Conjugate of a Complex Number.     09302090

Q. What do you mean by equality of Complex Number?    09302091


Q. If 2x + y2i = 4 + 9i then find the value of x and y.     09302092

Q. Which properties of Real Numbers are valid for Complex Number?     09302093


 

6.


7.

8. Exercise 2.5

a.

 

b. Q.1 Evaluate                 09302094

(i)                 09302095

(ii)    09302096

 (iii)                 09302097

 (iv)     09302098

 (v)     09302099

 (vi) (Board 2014)     09302100

Q.2 Write the conjugate of the following numbers.     09302101

(i)     09302102

(ii)     09302103

(iii)                 09302104

(iv)                 09302105

(v)     09302106

(vi)     09302107

Q3. Write the real and imaginary part of the following numbers.      09302108

(i)     09302109

(ii)                 09302110

(iii) (Board 2014)                 09302111

(iv)                 09302112

(v)     09302113

 (vi) (Board 2015)       09302114

Q4. Find the value of   and   if      09302115

Q.  How can we add two complex numbers?

09302116

Q. How can we multiply two complex numbers?     09302117

Q. How can we multiply a complex number with scalar?     09302118

Q. How can we get difference of two complex numbers?      9302119

Q. Explain division of complex numbers?

Example 1:     09302121

Separate the real and imaginary parts of  

Example 2     09302122

       Express   in the standard form a+ bi.

 

 Example 3:     09302123

        Express   in the standard form a + bi.

Example 4     09302124

Solve (3  4i)(x + yi) = 1 + 0 i for real numbers x and y, where i =  


 


9.

10. Exercise 2.6:


 

Q.1 Identify the following statements as true or false.     09302125

(i)     09302126

(ii)     09302127

(iii)     09302128

(iv) Complex conjugate of 

  is (-1+6i)     09302129

(v) Difference of a complex number   and its conjugate is a real number.

    09302130

(vi) If   then   and  .     09302131

(vii) Product of a complex number and its conjugate is always a non-negative real number.     09302132

Q.2 Express each complex number in the standard form  where ‘ ’ and ‘ ’ are real numbers.    09302133

(i)    09302134

 (ii)     09302135

 (iii)     09302136

 (iv)    09302137

Q.3 Simplify and write your answer in the form      09302138

(i)     09302139

 (ii)     09302140

 (iii)     09302141

(iv)    09302142

Q.4 Simplify and write your answer in the form of      09302143

(i)     09302144

 (ii)     09302145

 (iii)     09302146

 (iv)     09302147

 (v) (Board 2013)     09302148

 (vi)     09302149

Q.5 Calculate (a)     (b)    (c)      (d)   for each of the following.     09302150

(i)     09302151

 (ii) (G.B 2014)     09302152

 (iii)     09302153

 (iv)     09302154

Q.6 If   and  , show that:                 09302155

(i)     09302156

 (ii)     09302157

 (iii)     09302158

(iv) , where                  09302159

(v)   is the real part of         09302160

 (vi)   is the imaginary part of z. 09302161

Q.7 Solve the following equation for real   and                    (Board 2014)    09302162

(i) (Board 2013)       09302163

 (ii)      09302164

 (iii)     09302165

 

 

11. Review Exercise 2    OBJECTIVE


Q.1  Multiple Choice Questions. Choose the correct answer.

 

1.     09302166

(a) (b)  

(c) (d)  

2. Write   in exponential form     09302167

(a) x (b) x7         (Board 2013)

(c) (d)  

3. Write   with radical sign….     09302168

(a) (b) (Board 2014)

(c) (d)  

4. In   the radicand is       09302169

(a) 3 (b)  

(c) 35 (d)      None of these

5.   (Board 2014)     09302170

(a) (b)  

(c) (d)  

6. The conjugate of 5 + 4i is _____     09302171

(a) – 5 + 4i (b)      – 5 – 4i      

(c) 5 – 4i (d) 5 + 4i

7. The value of i9 is ____             09302172

(a) 1 (b) –1 

(c) i (d) –i

8. Every real number is ____     09302173

(a) A positive integer

(b) A rational number

(c) A negative  integer

(d) A complex number

9. Real part of 2ab   is ____       09302174

(a)  2ab (b) 2ab    (Board 2014)

(c)  2abi (d)       2abi

10. Imaginary part of  (3 +2) is_   09302175

(a) 2 (b)   2       (Board 2014)

(c) 3 (d)  –3

11. Which of the following sets have the closure property w.r.t. addition_____      09302176

(a) {0}          (b) {0, 1}

(c) {0, 1}          (d)  

12. Name the property of real numbers used in      09302177

(a)   Additive identity

(b)  Additive Inverse

(c)   Multiplicative identity

(d)  Multiplicative Inverse

13. If x, y, z   R z < 0 then     09302178

(a)   x z < y z     (b)  x z > y z

(c)   x z = y z     (d)  none of these

14. If a,  then only one of a = b or a < b or a > b holds is called…          09302179

(a)   Trichotomy property

(b)  Transitive property

(c)    Additive property

(d)  Multiplicative property

15. A non-terminating, non-recurring decimal represents:     09302180

(a)   A natural number

(b)  A rational number

(c)   An irrational number

(d)  A prime number

16. The union of the set of rational numbers and irrational numbers is known as set of ___     09302181

(a)  Rational number  (b)  Irrational

(c)   Real number       (d)  Whole number

17. For each prime number A,   is an (a)  Irrational (b) Rational      09302182

(c)  Real (d)  Whole

18. Square roots of all positive non-square integers are ____     09302183

(a)  Irrational (b)  Rational

(c)  Real (d)  Whole

19.  is an _____ number.     09302184

(a)  Irrational (b)  Rational

(c)  Real (d)  None

20.  then a < b and b < c  a < c is ____ property.     09302185

(a)   Transitive

(b)  Trichotomy 

(c)   Additive 

(d)  Multiplicative 

21. Name the property of real numbers used in x > y or x = y or x < y.   09302186

(a) Trichotomy (b) Transitive

(c) Additive (d) Multiplicative

22. Name the property of real numbers used in  + () = 0.     09302187

(a) Additive  inverse

(b) Multiplicative  inverse

(c) Additive  identity

(d) Multiplicative  identity

23.   is a ___ number.     09302188

(a) Rational (b) Irrational

(c) Real (d)  None

24.     09302189

(a)     (b)  

(c)       (d)  

25.     09302190

(a) (b) (8)5

(c) (8) (d)  

26. The value of i 10 is:     09302191

(a) 1 (b) 1

(c)  i (d) i

27. The solution set of x2 +1 = 0 is:       09302192

(a) {i, i}   (b) {i, i}

(c) { i,  i} (d)   

28. The conjugate of 2 + 3i is ___     09302193

(a) 2  3i (b) 2 3i

(c) 2 + 3i (d) 2 + 3i

29. Real part of  is:     09302194

(a) 1 (b)  

(c) 1 (d)  

30. Imaginary part of  is     09302195

(a) 1             (b)  

(c) 1 (d)  

31. Product of a complex number and its conjugate is always a non-negative____ number.     09302196

(a) Real       (b) Irrational

(c) Rational    (d) None

32.   is a/an………. number      09302197

(a) irrational (b) rational 

(c) natural (d) whole

33. Q and Qare ______sets        09302198

(a) disjoint set (b) over lapping

(c) Q is a subset of Q

(d) Q is equal to Q

34. Additive identity of real number is   09302199

(a) 0 (b) –a

(c) 1 (d)  a

35. Additive inverse of (a) is……..     09302200

(a)  –a (b) a

(c)  0 (d) 1

36. The value of i (iota) is_______     09302201

(a)    (b) –1

(c)  +1 (d) (–1)2

37. In –2+3i, 3 is called _______        09302202

(a) imaginary part (b) real part

(c) negative part (d) complex number

38. In  , the symbol  is called…….

      09302203

(a) radical sign (b) index 

(c) exponent (d) base

39. In   ‘n’ is called……..          09302204

(a) base (b) radical sign

(c) index (d) radical

40. The set of natural numbers is……  09302205

(a) {0,1,2,3….} (b) {2,4,6….}

(c) {1,2,3…..} (d) {2,3,5,7…}

41. The set of whole numbers is…..     09302206

(a) {1,3,5….} (b) {01, 2,….}

(c) {1,2,3…..} (d) {0,1,2,3…}

42.  , e,  ,   and   are called… 

(a) irrational numbers     09302207

(b) rational number

(c) natural numbers     (d) real number

43.       09302208

(a)      (b) Q

(c) R (d)  

44. “For all”  is represented by symbol  09302209

(a)  (b) 

(c)  (d)  

45.   is usually written as     09302210

(a) a1/4 (b) a

(c) (d)  

46. The roots of y2+1 = 0 are     09302211

(a) {i, –1} (b) {1, –i}

(c) {i, –i} (d) {1, –1}

47. If Z =  -1-i then   is equal to…….   09302212

(a)  1–i (b)  1+ i

(c)  –1+i (d)  –1–i

48. The real part of 3i +2 is……..     09302213

(a)  –2 (b)  2

(c)  –2 (d)  1

49. A pure imaginary number is the _____ of a negative real number      09302214

(a) square root (b) square 

(c) cube (d) cube root

50. Number like  ,   etc. are called

(a) real numbers     09302215

(b) pure imaginary numbers

(c) rational numbers

(d) irrational numbers

51. If (a-1)-(b+3)i = 5+8i then     09302216

(a) a = 6, b = –11 (b) a= 6, b= 11

(c) a = 11, b = –6 (d) a = –6, b = –11

52. The conjugate of real is the _____ real number.     09302217

(a) negative of (b) same

(c) square of (d) square root

53. If  then     09302218

(a)  

(b)  

(c)  

(d)   

54.   form of   is _______.     09302219

(a)  (b)  

(c)  (d)  

55. On the number line   lies between ___.     

(a) 1 and 2 (b) 2 and 3    09302220

(c) 7 and 15 (d) 0 and 2

56.   form of   is ________.    09302221 

(a)  (b)     

(c)    (d)   


 

 

Q.2  True or False? Identify

(i) Division is not associative operation. 09302222

(ii) Every whole number is a natural number. 09302223

(iii) Multiplicative inverse of 0.02 is 50. 09302224

(iv) is a rational number. 09302225

(v) Every integer is a rational number. 09302226

(vi) Subtraction is a commutative operation. 09302227

(vii) Every real number is a rational number. 09302228

(viii) Decimal representation of a rational number is either terminating or recurring 09302229

(ix.) 1.  = 1 +    09302230



 

Q.3 Simplify: (i) 09302231

 (ii)     09302232

 (iii)                 09302233

(iv)                 09302234

Q.4  Simplify:  (Board 2015)

    09302235

Q.5 Simplify:                 09302236

 

Q.6    Simplify: 

09302237

Q.7  Simplify:  009302238

Q8. Simplify:  09302239

Q9. Simplify: 09302240

Q10. If   then find the value of a and b. 09302241

 


UNIT 3



a.

 

Example 1:     09303001

Write each of the following ordinary numbers in scientific notation

(i) 30600   (ii) 0.000058     09303003

Example 2     09303004

Change each of the following numbers from scientific notation to ordinary notation. 

(i) 6.35   106 09303005 (ii)7.61 104     09303006



12.

 

13.

14. Exercise 3.1:

 

Q.1 Express each of the following numbers in scientific notation.     09303007

i) 5700     09303008

ii) 49,800,000     09303009

iii) 96,000,000     09303010

iv) 416.9     09303011

v) 83,000 09303012

vi) 0.00643 09303013

vii) 0.0074     09303014

viii) 60,000,000           09303015

ix) 0.00000000395     09303016

x) (Board 2013)     09303017


Q.2 Express the following numbers in ordinary notation.     09303018

i)     09303019

 

ii)     09303020

iii)     09303021

iv)     09303022

Q. Define Logarithm of a Real Number.

09303023

Example 3:        09303024

 Find , i.e., find log of 2 to the base 4.

Q. Define Common or Brigg’s Logarithm. 

09303025

Q. Define Natural Logarithm.     09303026

Q. Define characteristic of Logarithm. 

    09303027

Q. Define characteristic of Logarithm of a number > 1.     09303028

Q. Define characteristic of Logarithm of a number < 1. 09303030

Example :        09303031

Write the characteristic of the log of following numbers by expressing them in scientific notation and noting the power of 10.    0.872,   0.02 ,   0.00345

Q. Define Mantissa.     09303032


 Example 1:        09303033

   Find the mantissa of the logarithm of 43.254

Example 2:        09303034

   Find the mantissa of the logarithm of 0.002347

  Example 3:        09303035

Find (i) log 278.23  (ii) log 0.07058

Q. Define Antilogarithm.     09303036

Example:        09303037

  Find the numbers whose logarithms are  

(i) 1.3247 09303038 (ii)   .1324   09303039

 

Exercise 3.2:

 

Q.1 Find the common logarithm of the following numbers.     09303040

i) 232.92

ii) 29.326     09303041

iii) 0.00032     09303042

iv) 0.3206     09303043

Q.2 If log 31.09 = 1.4926, find the values of following:      09303044

i) log 3.109      09303045

ii) log 310.9      09303046

iii) log 0.003109      09303047

iv) log 0.3109     09303048

Q.3 Find the numbers whose common logarithms are:     09303049

i) 3.5621     09303050

ii)       09303051

Q.4 What replacement for the unknown in each of following will make the statement true?     09303052

i)     09303053

ii)      09303054

iii)      09303055

iv)      09303056

1. Q.5 Evaluate

i)      09303058

ii) log 512 to the base       09303059

Q.6 Evaluate the value of ‘x’ from the following statements.      09303060

i)      09303061

ii)     09303062

iii)      09303063

iv) (Board 2014, 15)          09303064

v) (Board 2013,14)      09303065

Q. Prove that  loga(mn) = logam + logan

     09303067

Example 1         09303068

Evaluate 291.3   42.36

Example 2 :         09303069

Evaluate 0.2913   0.004236.

Q. Prove that   

     09303070

Example 1:         09303071

Evaluate  

Example 2:         09303072

Evaluate  

Q. Prove that loga(mn) = nlogam      09303073


Example 1:         09303074

Evaluate  

 Q. Prove that      09303075

      or    =  

 Q. How can we convert natural log into common log.      09303076


Example:   

Calculate       09303077


 

 

Exercise 3.3:

 

Q.1 Write the following into sum or difference.     09303078

i)     09303079

ii)     09303080

iii)     09303081

iv) (Board 2013)     09303082

v) (Board 2015)   09303083

vi)   09303084

a. Q.2 Express     09303085

  as a single logarithm

Q.3 Write the following in the form of a single logarithm.     09303086

i) log 21 + log 5 (Board 2013)     09303087

ii) log 25 – 2 log3 (Board 2015)     09303088

iii) (Board 2014)     09303089

iv)     09303090

Q.4  Calculate the following:     09303091

i)          09303092

ii)     09303093

Q.5 If   

 , then find the values of the following.     09303094

i)    log 32 (Board 2014)     09303095

ii) log 24     09303096

iii)     09303097

iv)     09303098

v) (Board 2015)     09303099

 

Applications of logarithm


 Example 1 :           09303100

Show that 

 

 

 Example 2:        09303101

Evaluate:   

 Example 3     09303102

Given A = Aoekd. If k = 2, what should be the value of d to make  ?




 


 

Exercise 3.4:

 

Q.1 Use log tables to find the values of     09303103

i)   (Board 2013)     09303104

ii)     09303105

iii)     09303106

iv) (Board 2013,14)     09303107

v)     09303108

vi) (Board 2015)     09303109

vii)         09303110

viii) (Board 2015)           09303111

Q.2  A gas is expanding according to the law  . Find C when P=80, V=3.1 and  .     09303112

Q.3 The formula   applies to the demand of a product, where ‘q’ is the number of units and p is the price of one unit. How many units will be demanded if the price is Rs. 18.00?      09303113

Q.4 If    

    09303114

Q.5  If  , find   when   and      09303115

 



Review Exercise 3    OBJECTIVE


Q.1 Multiple Choice Questions. Choose the correct answer.

 

 

1. If ax = n, then _____     09303116

(a) a =      (b) x = logn a

(c) x =      (d) a =  

2. The relation of y = logz x implies  09303117 

(a)    (b)  (Board 2014)

(c)    (d)  

3. The logarithm of unity to any base is 

(a) 1 (b) 10 (Board 2014,15)     09303118

(c) e (d)  0

4. The logarithm of any number to itself as base is___     09303119

(a) 1 (b) 0

(c) 1 (d) 10

5. log e = ____ where e   2. 718     09303120

(a) 0 (b) 0.4343  (Board 2015)

(c)  (d) 1

6. The value of log  is ___     09303121

(a) log p log q     (b)  

(c) log p + log q    (d) log q  log p

7. logp – logq is same as:      09303122 

(Board 2014, 15)

(a)     (b)   

 (c)    (d)     

8. log can be written as     09303123

(a) (log m)n    (b) m log n

(c) n log m    (d) log (m n)

9. can be written as___

(a)  (b)      09303124

(c)  (d)      (Board 2013)

10. Logy x will be equal to___     09303125

(a)  (b)  

(c)  (d)  

11. For common logarithm, the base is_

(a) 2 (b) 10     09303126

(c) e (d) 1

12. For natural logarithm, the base is__

(a) 10 (b) e     09303127

(c) 2 (d) 1

13. The integral part of the common logarithm of a number is called the_

(a) Characteristic (b) Mantissa     09303128

(c) Logarithm (d) None

14. The decimal part of the common logarithm of a number is called 

the _____:     09303129

(a) Characteristic  (b) Mantissa

(c)  Logarithm (d) None

15. If x = log y, then y is called the _______ of x.     09303130

(a)  Antilogarithm   

(b)  Logarithm

(c)  Characteristic   

(d)  None


16. If the characteristic of the logarithm of a number is , that number will have zero (s) immediately after the decimal point.     09303131

(a) One (b) Two

(c) Three (d) Four

17. If the characteristic of the logarithm of a number is 1, that number will have ____ digits in its integral part     09303132

(a) 2 (b) 3

(c) 4 (d) 5

18. The value of x in log3 x = 5 is____

(a) 243 (b) 143     09303133

(c) 200 (d) 144

19. The value of x in log x = 2.4543 is  

      09303134

(a) 284.6 (b) 1.521

(c) 1.1010 (d) 0.4058

20. The number corresponding to a given logarithm is known as ___     09303135

(a)  Logarithm (b)Antilogarithm

(c)  Characteristic (d) None

21. 30600 in scientific notation is __  09303136

(a)  3.06 x 104 (b) 3.006 x 104

(c)  30.6 x 104     (d) 306 x 104

22. 6.35 x 106 in ordinary notation is___

(a)  6350000 (b) 635000     09303137

(c)  6350 (d) 63500

23. A number written in the form 

a x 10n, where   and n is an integer is called ____     09303138

(a) Scientific notation

(b) Ordinary notation 

(c) Logarithm notation

(d) None

24.           09303139

(a)  log1     (b) log n

(c)  log (1 – n) (d) – log n

25.               09303140

(a)  0     (b) 1

(c)  1 (d) 10

26.               09303141

(a)  0     (b) 1

(c)  a (d) 10

27. The characteristic of   is ________.               09303142

(a)  0     (b) 2

(c)  3 (d) 10

28. The characteristic of   is:    

(a)  0     (b) 3     09303143

(c)  – 3 (d) 45

29. If  , then what is the mantissa of  ?          09303144

(a)  0.3705     (b) – 0.6294

(c)  0.3801 (d) 0.2347

30. Common logarithm is also known as ______ logarithm.           09303145

(a)  natural     (b) simple

(c)  scientific (d) decadic

31.   is same as:           09303146

(a)     

(b)  

(c)   

(d)   

32. John Napier prepared the logarithms tables to the base _______.           09303147

(a)  0 (b) 1

(c)  10 (d)  e

33.   in common logarithm is written as _________.           09303148

(a)    (b)  

(c)    (d)   

34.   in single logarithm can be written as _____.           09303149

(a)    (b)  

(c)    (d)   

35. in single logarithm is written as:           09303150

(a)    (b)  

(c)    (d)   

36.           09303151

(a)  2.3026 (b) 0.4343

(c)    (d)  10

37. If   then x is:           09303152

(a)  25 (b) 32

(c)  10 (d)   

38. If  , then x = ____           09303153

(a)  2 (b) 9

(c)  81 (d)   


 

Q.2 Complete the following: 09303154

(i) For common logarithm, the base is ……………. 09303155

(ii) The integral part of the common logarithm of a number is called the…. 09303156

(iii) The decimal part of the common logarithm of a number is called the ……… 09303157

(iv) If x = log y, then y is called the ………… of x. 09303158

(v) If the characteristic of the logarithm of a number is , that  number will have …….. zero (s) immediately after the decimal point. 09303159

(vi) If the characteristic of the logarithm of a number is 1, that number will have ……… digits in its integral part. 09303160

 

Q.3 Find the value of ‘x’ in the  following. 

i) log3 x = 5           09303161

ii) log4 256 = x     09303162

iii) log625    (Board 2014)     09303163

iv)     09303164

Q.4 Find the value of ‘x’ in the  following. 

i) log x = 2.4543     09303165

ii) log x = 0.1821     09303166

iii) log x = 0.0044 (Board  2014)     09303167

iv) log x =      09303168

Q.5 If log2 = 0.3010, log3 = 0.4771 and 

log 5 = 0.6990, then find the values of the following.     09303169

i) log45     09303170

ii)     09303171

iii) log 0.048     09303172

Q.6 Simplify the following:

i)     09303173

ii)     09303174

iii)       (Board 2014)     09303175


UNIT 4 

 


b.

 

Q.  Define the Algebraic Expressions.        09304001

Q. Define Polynomials.        09304002

Q.  Define Degree of Polynomials.        09304003

Q. Define leading coefficient.       09304004

Q. Define Rational Expression.        09304005

_____________________________________________________________________


 

Example 1:      09304006

Simplify(i)

(ii)  

Example 2:    09304007

Find the product 


 Example:

Simplify  

Q. What do you mean by Value of Algebraic Expression?                                09304008

Example:        09304009

Evaluate   if x = 4 and y=9


 



Exercise 4.1:


 

Q.1 Identify whether the following algebraic expression are polynomials (yes or no). 09304010

(i) 09304011

(ii) 09304012

(iii) 09304013

(iv) 09304014


Q.2 State whether each of the following expression is a rational expression or not. 09304015

(i) 09304016

(ii) 09304017

(iii) 09304018

(iv) 09304019

Q.3 Reduce the following rational expression to the lowest forms. 09304020

(i) 09304021

(ii) 09304022

(iii) 09304023

(iv) 09304024

(v) 09304025


(vi) (Board 2013) 09304026

(vii)        09304027

Q.4 Evaluate (a)  for 09304028

(i) x = 3,y = 1, z = 2. 09304029

(ii) x = -1, y = -9, z = 4 09304030

Q.5 Perform the indicated operation and simplify: 09304032

(i) 09304033

(ii) 09304034

(iii) 09304035

(iv) 09304036

(v) 09304037

(vi) 09304038

Q.6 Perform the indicated operation and simplify: 09304039

(i)             09304040

(ii)              09304041

(iii) 09304042

(iv) 09304043

 (v) 09304044

Example: 09304045

If a + b = 7 and a  b = 3, then find the value of (a)  (b)  

Example 1: 09304046

If   and   then find the value of  .

Example 2: 09304047

If    and  then find the value of  .

 

 Example 3: 09304048

If   and  then find the value of  

Example 1: 09304049

If 2x and  , then find the value of  .

 

 Example 2: 09304050

If  , then find the value of  

Example 3: 09304051

If   then find  

Example 1: 09304052

Factorize 

 Example 2: 09304053

Factorize  

Example 3: 09304054

Factorize  

Example 4: 09304055

Find the product  

Example 5: 09304056

Find the continued product of  

 

Exercise 4.2:


 

Q.1(i) If a + b = 10 and a  b = 6 then find the value of a2 + b2. (Board 2013) 09304057

 (ii) If a + b = 5, a  b =   then find the value of ab. 09304058


Q.2 If a2 + b2 + c2 = 45 and a + b + c = 1 find the value of ab + bc + ca. 09304059

Q3.  If m+n+p = 10, mn + np + pm = 27 find the value of m2+n2+p2. 09304060

Q.4 If x2 +y2 + z2 = 78 and xy+yz+zx=59 find the value of x + y + z. 09304061

Q5.   If x + y + z = 12 and x2 +y2+z2=64 find the value of xy+yz+zx. 09304062

Q.6   If x + y = 7 and xy = 12 then find the value of x3 + y3. 09304063

Q.7 If 3x + 4y = 11 and xy = 12 then find the value of 27x3 + 64 y3. 09304064

Q8. If x – y = 4 and xy = 21 then find the value of x3 – y3. 09304065

Q.9 If 5x  6y = 13 and xy = 6 then find the value of 125x3 – 216y3. 09304066

Q.10If   then find the value of  .

09304067

Q11.  If  , then find the value of   

Q.12 If  then find the value of  09304069

Q.13 If , then find the value of . 09304070

Q.14  Factorize (i) x3 – y3 – x +y 09304071

(i) x3 – y3 – x + y 09304072

(ii) 09304073

Q.15  Find products, using formulae 09304074

(i)  (x2+y2)(x4–x2y2+y4) 09304075

 (ii) 09304076

 (iii) 

09304077

(iv).(2x2 –1)(2x2+1)(4x4 + 2x2+1) (4x4 – 2x2 + 1)

09304078

Q. Define Surd. 09304079

Example: 09304080

Simplify by combining similar terms.

(i) (ii)  

Multiplication and Division of Surds 

 Example: 09304081

Simplify and express the answer in the simplest form.

(i) (ii)  

 



Exercise 4.3:


 

Q.1 Express each of the following surd in the simplest form. 09304082

(i) 09304083

(ii) 09304084

(iii) 09304085

(iv) 09304086

Q.2 Simplify 09304087

(i) 09304088

(ii)             (Board 2013) 09304089

(ii)     09304090


(iii)             09304091

(iv) 09304092

Q.3 Simplify by combining similar terms:             09304093

(i)  

(ii) 09304094

(iii)              09304095

(iv) 09304096

Q.4 Simplify:             09304097

(i)             09304098

(ii) 09304099


(iii) 09304100



  (Board 2014)

09304101

(iv)  

09304102

Define Monomial Surd.    09304103

Q. Define Binomial Surd. 09304104

Q.  Define Conjugate of Surds. 09304105

Q. What is Rationalization of Surds?

09304106

Example 1:

Rationalize the denominator   09304107

Example 2: 09304108

Rationalize the denominator  



 


Example 3:

Simplify 09304109


 

Example 4:

Find rational numbers x and y such that  09304110


Example 5:

If  , then evaluate

(i) and (ii)   09304111

 


Exercise 4.4:


 

Q.1 Rationalize the denominator

(i) 09304112

(ii) 09304113

(iii) 09304114

(iv)                         09304115


(v) 09304116


(vi) 09304117


(vii) 09304118


(viii) 09304119

Q.2 Find conjugate of  : 09304120

(i) 09304121

 (ii) 09304122

 (iii) 09304123

 (iv) 09304124

 (v) 09304125

 (vi) 09304126

 (vii) 09304127

 (viii) 09304128

Q.3 If   find    09304129

 (ii) If   find                   09304130

 (iii) If  , find                09304131

Q.4 Simplify              09304132


(ii) Simplify  09304133

 (iii) Simplify  

Q.5(i) If  , find value of   and  (Board 2014) 09304135

 (ii) If   find the value of   and      09304136

Q.6 Determine the rational numbers a and b. If          

 (Board 2014)

09304137

 



Review Exercise 4    OBJECTIVE

Q.1 Multiple Choice Questions. Choose the correct answer. 


 

1. 4x + 3y  2 is an algebraic____09304138

(a) Expression    (b) Sentence

(c) Equation       (d) In equation

2. The degree of polynomial 4x4+2x2y is ____ 09304139

(a)1 (b)2

(c)3 (d)4

3. a3 + b3 is equal to____            09304140

(a) (ab) (a2+ab+b2)

(b) (a+b) (a2ab + b2)

(c) (ab) (a2ab + b2)

(d) (ab) (a2 + abb2)

4.   is equal to:___09304141

(a) 7 (b)  –7  (Board 2013,14,1 5)

(c) –1 (d)  1

5. Conjugate of Surd  is_ 09304142

(a)  (b)        (Board 2013)

(d)  (d) 

6.   is equal to 09304143

(a)  (b)    (Board 2015)

(c)  (d)  

7.   is equal to: 09304144

(a) (ab)2 (b) (a+b)2

(c) a+b (d) ab

8.    is equal to:__ 09304145

(a)a2 + b2 (b) a2 b2    (Board 2014)

(c)a  b (d) a + b       

9. The degree of the polynomial x2y2+3xy+y3 is ___ 09304146

(a)4 (b)5

(c)6 (d)2

10.   = ………………… 09304147

(a)  (x2) (x+2)  (b) (x2) (x2) 

(c) (x +2) (x+2)  (d) (x – 2)2

11. (……………) 09304148

(a)  (b)  

(c)  (d)  

12. 2(a2 + b2) = ____ 09304149

(a) (a+b)2 + (ab)2(b)(a+b)2

(b) (a+b)2 (ab)2  (d)    4ab

13. Order of surd   is ____ 09304150

(a)3 (b) 

(c)0 (d)1

14. 09304151

(a) (b) 

(d) (d) 

15. (a+b)2 (ab)2 = ________ 09304152

(a)2(a2 + b2) (b)4ab

(c)2ab (d)3ab

16. 09304153

(a) (b) 

(c) (d) 

17. A surd which contains a single term is called _______surd. 09304154

(a) Monomial (b) Binomial

(c) Trinomial (d) Conjugate 

18. What is the leading coefficient of polynomial  ? 09304155

(a) 2 (b) 3

(c) 5 (d) 8

19. A surd which contains two terms is called _______surd. 09304156

(a) Monomial (b) Binomial

(c) Trinomial (d) Conjugate 

20. If H.C.F of p(x) and q(x) is ____ then expression   is in lowest form.

09304157

(a) 0 (b) 1

(c) 2 (d) 3


21. Which of the following is polynomial?

 (a) (b)   09304158

(c) (d)  

22. If   and  , then value of a is:     09304159

(a) 2 (b) 3

(c) 5 (d)   7

23. If   and  , then value of b is _______.     09304160

(a) 2 (b) 3

(c) 5 (d)   7

24.     09304161

(a) 12 (b) 9

(c) 6 (d)   3

25.     09304162

(a) 34 (b) 21

(c) 16 (d)   2

26. If   is a surd of order n, then “a” is ____ number. 09304163

(a) rational (b) irrational 

(c) complex (d)   prime

27. Which of the following is not surd? 

 (a) (b)        09304164

(c) (d)    

28.      09304165

(a) 3 (b) 7

(c) 10 (d)   21

29. Rationalizing factor of   is:

   09304166

(a) (b)   

(c)   (d)  4

30. In the polynomial with the variable x, all the powers of x are------ integers.     09304167

(a) non-negative (b) negative  

(c) non-positive (d)  none of these 

31. If the product of two surds is a rational number, then each surd is called the _____ of the other.    09304168

(a) monomial surd    (b) binomial surd  

(c) trinomial surd

(d) rationalizing factor

32. Polynomial means an expression with:

(a) one term (b) two terms    09304169

(c) three terms (d)  many terms


 

 

 

Q.2 Fill in the blanks. 09304170

(i) The degree of the polynomial x2 y2 + 3xy + y3 is ……..…..       09304171

(ii) x2 – 4 = ……..….. 09304172

(iii) x3 +   =  ………………… 09304173

(iv) 2(a2 + b2) = (a + b)2 + ……………. 09304174

(v) = …………… 09304175

(vi) Order of surd   is ………… 09304176

(vii)   = …………… 09304177

____________________________________________________________________

 

Q.3 If   find            09304178

(i)  09304179 (ii)  09304180

Q.4 If   find          09304181

(i)  09304182 (ii)    09304183

Q.5 Find value of   and   if   and  09304184

Q.6 If   find 09304185

(i)  09304186 (ii)  09304187

(iii)    09304188 (iv)    09304189

Q.7 If q =  + 2 Find 09304190

(i)  q + 09304191 (ii)  q –  09304192

(iii) q2 +      09304193 (iv)  q2 – 09304194

Q.8 Simplify 09304195

 (ii) Simplify 

09304196

Q9. Simplify:

09304197

Q10. Simplify:

09304198


Q11. Simplify: 

09304199

Q12. Factorize: 

09304200

Q13. Rationalize the denominator of:

09304201



 


UNIT 5



c.

 

Q. Define Factorization. 09305001

 (i) Factorization of the Expression of the type ka + kb + kc.

Example 1 09305002

Factorize 5a-5b+5c

Example 2 09305003

Factorize 5a – 5b – 15c

 (ii) Factorization of the Expression of the type ac + ad + bc + bd

Example 1 09305004

Factorize 3x  3a + xy ay

Example 2 (Board 2013) 09305005

Factorize pqr + qr2pr2r3

 (iii) Factorization of the Expression of the type  .

Example 1 09305006

Factorize 25x2 + 16 + 40x.

Solution:

25x2+40x+16 =(5x)2+2(5x)(4) + (4)2

= (5x+4)2

= (5x+4) (5x+4)

Example 2 09305007

Factorize 12x2–36x+27

(iv) Factorization of the Expression of the type a2 – b2.

Example 1 Factorize 09305008

(i) 4x2 –(2y  z)2 (ii)6x4 – 96


 (v)Factorization of the Expression of the types a2 2ab + b2 – c2.

Example 09305009

Factorize (i)  

(ii)  


 

 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

15. Exercise 5.1

 

Q.1 Factorize: 09305010


  09305011

  09305012

  09305013

  09305014

 09305015

  09305016

Q.2 Factorize:

  09305017

  09305018

  09305019

  09305020

Q.3 Factorize:

               09305021

  09305022

  09305023

  09305024

Q.4 Factorize:

             09305025

  09305026

  09305027

  09305028

Q.5 Factorize:

  09305029

  09305030

  09305031

  (Board 2014)09305032

 (Board 2014)09305033

  09305034

 (a) Factorization of the Expression of type a4+a2b2 + b4 or a4 + 4b4      09305035

Example 1    09305036

Factorize  

Example 2

Factorize                     09305037

 (b) Factorization of the Expression of the type  .

Example   09305038

Factorize (i)  (ii)  

(c) Factorization of the Expression of the type  

Example Factorize (i)   09305039

(ii) (iii) 

 (d) Factorization of the following types of Expressions.

 

 

 

Example 1     09305040

Factorize 

Example 2 Factorize  09305041

Example 3   09305042

Factorize  

 (e) Factorization of Expressions of the following Types

 

Example:   09305043

Factorize  

 (f) Factorization of Expressions of the following types  

We recall the formulas,

 

 

Example 1 09305044

Factorize 

Example 2          (Board 2014) 09305045

Factorize  


 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Exercise 5.2

 

Q.1 Factorize: 09305046

  09305047

  09305048

  09305049

  09305050

  (Board 2013) 09305051

  09305052

Q.2 Factorize:

  09305053

  09305054

  09305055

  09305056

Q.3 Factorize:

              09305057

     (L.B. 2014) 09305058

  09305059

  09305060

  09305061

  09305062

  09305063

  09305064

Q.4 Factorize:

 

09305065

  09305066

 09305067

 

09305068

 09305069

Q.5 Factorize:

    (Board 2014)  09305070

  09305071

  09305072

 093050073

Q.6 Factorize:

               09305074

  09305075

  09305076

          (Board 2014)    09305077

Q.  Define Remainder Theorem.        09305078

Application of reminder theorem:

Example 1 09305079

Find the remainder when  is divided by

  (i) x – 3  (ii) x + 3   (iii) 3x + 1   (iv) x=0

Example 2 09305080

Find the value of k if the expression  leaves a remainder of 2 when divided by .

Q. Define Zero of a polynomial. 09305081

Q.  Define Factor Theorem. 09305082

Example 1 09305083

Determine if  is a factor of 

Example 2 09305084

Find a polynomial  of degree 3 that has 2, 1, and 3 as zeros (i.e., roots).




 


16. Exercise 5.3

 

Q.1 Use the remainder theorem to find the remainder, when. 09305085

  09305086

 09305087

 is divided by (x + 2)

09305088

 is divided by 2x+1 09305089

 is divided by x + 2 

09305090

Q.2(i) If (x+2) is a factor of   then find the value(s) of k. 09305091

 (ii) If (x 1) is factor of   then find the value of k. 09305092

Q.3 Without actual long division determine whether 09305093

(i) (x  2) and (x  3) are factors of 09305094

 (ii)(x – 2), (x + 3) and (x  4) are factors of            09305095

Q.4 For what value of m is the polynomial exactly divisible by x+2? 09305096

Q.5 Determine the value of k if  and q (x)= x3 – 4x + k. Leaves the same remainder when divided by x3. 09305097

Q.6 The remainder of dividing the polynomial   by (x + 1) is 2b. Calculate the value of ‘a’ and ‘b’ if this expression leaves a remainder of (b + 5) on being divided by (x  2) 09305098

Q.7 The polynomial   has a factor (x + 4) and it leaves a remainder of 36 when divided by (x2). Find the value of   and m. (Board 2013) 09305099

Q.8 The Expression  leaves remainder of 3 and 12 when divided by (x1) and (x+2) respectively. Calculate the values of   and m. 09305100

Q.9 The expression   is exactly divisible by . Find the values of a and b. 09305101

Q.  Define Rational Root Theorem.09305102

Example 09305103

Factorize the polynomial , by using Factor Theorem.

 is a zero of P(x).

Hence   is the third factor of P(x).

Thus the factorized form of 

  

 

Exercise 5.4

 


Factorize each of the following cubic polynomials by factor theorem. 09305104

Q.1             09305105

Q.2    09305106

Q.3    09305107

Solution:

Let  

Expected zeros of P(x) are  1,  2, 5

 

 

        

        

        

So,  x = 1 is not a zero of P(x)

 

 

 

           

 

So, x = 1 is a zero of P(x).

 

 

 

 

         

 

So, x = 2 is a zero of P(x).

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

Q.4 09305108

Q.5 09305109

Q.6    09305110

Q. 7 09305111

Q.8       (Board 2015) 09305112

 


Review Exercise 5    OBJECTIVE

Q.1 Multiple Choice Questions. Chose the correct answer.

 

33. The factor of x25x+6 are: __ 09305113

      (a)  x +1, x  6 (b) x 2, x3    (Board 2014)

      (c)  x + 6, x 1 (d) x +2 , x + 3

34. Factors of 8x3 + 27y3 are:___ 09305114

(a) (2x+3y) (4x29y2)

(b) (2x-3y)  (4x2 – 9y2)

(c) (2x + 3y)  (4x2 – 6xy + 9y2)

(d) (2x3y) (4x2 + 6xy + 9y2)

35. Factors of 3x2 x2 are:(Board 2013,14)09305115    

(a) (x+1) (3x2) (b) (x+1) (3x+2)  

(c) (x1) (3x2) (d)(x1) (3x+2)

36. Factors of a4 4b4 are: ___ 09305116

(a)  (ab) (a+b) (a2+4b2)            (Board 2014)

(b)  (a22b2) (a2 + 2b2)

(c)  (ab) (a+b)  (a24b2)

(d)  (a2b) (a2+ 2b2)

37. What will be added to complete the square of 9a212ab?___ 09305117

(a) –16 b2 (b) 16 b2 (Board 2013, 15)

(c) 4b2 (d) –4b2

38. Find m so that x2 + 4x+m is a complete square: 09305118

(a) 8 (b) 8

(c) 4 (d) 16

39. Factors of 5x2 – 17xy 12y2 are___09305119

(a)  (x+4y) (5x+3y)   (b)  (x4y) (5x – 3y)

(c)  (x4y) (5x + 3y)  (d)  (5x – 4y) (x +3y)

40. Factors of  are___ 09305120

(a)      

 (b)  

(c)        

(d) 

41. If x–2 is a factor of 

p(x) = x2+2kx+8, then k = __ 09305121

(a)  –3 (b) 3

(c)  4 (d) 5

42. 4a2+4ab+(…..) is a complete square

(a)  b2 (b) 2b 09305122

(c)  a2 (d) 4b2

43. 09305123

(a)    (b)  

(c)      (d)  

44. (x+y) (x2 – xy + y2) = ___ 09305124

(a)  x3 y3 (b)  x3 + y3

(c)  (x+y)3 (d)  (x – y)3

45. Factors of x4 – 16 is ___ 09305125

(a)  (x2)2

(b)  (x2) (x+2) (x2+4)

(c)  (x2) (x+2)

(d)  (x+2)2

46. Factors of 3x – 3a + xy – ay. 09305126

(a)  (3+y) (xa) (b)  (3y) (x+a)

(c)  (3y) (xa) (d)  (3+y) (x+a)

47. Factors of pqr + qr2 –pr2 – r3 is: 09305127

(a) r(p+r) (qr) 

(b) r(pr) (q + r)

(c) r(pr) (qr)

(d) r(p+r) (q+r)

48. If   is a factor of  , then remaider is: 09305128

(a)    (b)  

(c)    (d)  1

49. What is the value of   at  ? 09305129

(a)   (b) 3

(c)  – 3 (d) 4

50. What is the value of   at ? 09305130

(a) 9 (b) 8

(c)  2 (d) 7

51. 09305131

(a)   (b)  

(c)    (d)   

52. 09305132

(a)   

(b)  

(c)        

(d)   

53. How many factors of a cubic expression are there? 09305133

(a) zero (b)   1

(c) 2 (d) 3

54. If a polynomial  is divided by a linear divisor  , then the remainder is:  09305134

(a) zero (b)   a

(c) p (a) (d) (x – a)

55. If a polynomial   can be expressed as  , then each of the polynomial   and   is called a _________ of  . 09305135

(a) remainder (b)   factor

(c) zero (d)   product

56. (x – y) (x2 + xy + y2) = ___ 09305136

(a)  x3 y3 (b)  x3 + y3

(c)  (x+y)3 (d)  (x – y)3








 

 

Q.2. Completion items fill in the blanks. 09305137

i. x2 + 5x + 6 = …………. 09305138

ii. 4a2 – 16 = ………….. 09305139

iii. 4a2 + 4ab + (………) is a complete square. 09305140

iv.   = ……….. 09305141

v. (x + y) (x2 – xy + y2) = ………. 09305142

vi. Factorized form of x4 – 16 is 09305143

vii. If x – 2 is a factor of p(x) = x2+2kx + 8, then k =  ……. 09305144

 

Q.3.Factorize the following:

(i) x2 + 8x + 16 – 4y2 09305145

 (ii) 4x2 – 16y2 09305146

 (iii) 9x2 + 27 x + 8 09305147

 (iv) 1 – 64 09305148

 (v) 8x3 –  09305149

 (vi) 2y2 + 5y – 3 09305150

 (vii) x3 + x2 – 4x – 4 09305151

 (viii)  25m2 n2 + 10mn + 1 09305152

 (ix) 1 – 12 pq + 36 p2 q2 09305153

Q.4.Factorize the following:

(i) 09305154

(ii) 09305155

(iii) 09305156

 (iv) 09305157


(v) 09305158

Q5. What will be added to complete the square of  ? 09305159

Q6. Find m so that x2 + 4x+m is a complete square. 09305160


UNIT 6

 


a.

 

Q. Define Factorization. 09305001

 (i) Factorization of the Expression of the type ka + kb + kc.

Example 1 09305002

Factorize 5a-5b+5c

Example 2 09305003

Factorize 5a – 5b – 15c

 (ii) Factorization of the Expression of the type ac + ad + bc + bd

Example 1 09305004

Factorize 3x  3a + xy ay

Example 2 (Board 2013) 09305005

Factorize pqr + qr2pr2r3

 (iii) Factorization of the Expression of the type  .

Example 1 09305006

Factorize 25x2 + 16 + 40x.

Solution:

25x2+40x+16 =(5x)2+2(5x)(4) + (4)2

= (5x+4)2

= (5x+4) (5x+4)

Example 2 09305007

Factorize 12x2–36x+27

(iv) Factorization of the Expression of the type a2 – b2.

Example 1 Factorize 09305008

(i) 4x2 –(2y  z)2 (ii)6x4 – 96


 (v)Factorization of the Expression of the types a2 2ab + b2 – c2.

Example 09305009

Factorize (i)  

(ii)  


 

 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

17. Exercise 5.1

 

Q.1 Factorize: 09305010


  09305011

  09305012

  09305013

  09305014

 09305015

  09305016

Q.2 Factorize:

  09305017

  09305018

  09305019

  09305020

Q.3 Factorize:

               09305021

  09305022

  09305023

  09305024

Q.4 Factorize:

             09305025

  09305026

  09305027

  09305028

Q.5 Factorize:

  09305029

  09305030

  09305031

  (Board 2014)09305032

 (Board 2014)09305033

  09305034

 (a) Factorization of the Expression of type a4+a2b2 + b4 or a4 + 4b4      09305035

Example 1    09305036

Factorize  

Example 2

Factorize                     09305037

 (b) Factorization of the Expression of the type  .

Example   09305038

Factorize (i)  (ii)  

(c) Factorization of the Expression of the type  

Example Factorize (i)   09305039

(ii) (iii) 

 (d) Factorization of the following types of Expressions.

 

 

 

Example 1     09305040

Factorize 

Example 2 Factorize  09305041

Example 3   09305042

Factorize  

 (e) Factorization of Expressions of the following Types

 

Example:   09305043

Factorize  

 (f) Factorization of Expressions of the following types  

We recall the formulas,

 

 

Example 1 09305044

Factorize 

Example 2          (Board 2014) 09305045

Factorize  


 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Exercise 5.2

 

Q.1 Factorize: 09305046

  09305047

  09305048

  09305049

  09305050

  (Board 2013) 09305051

  09305052

Q.2 Factorize:

  09305053

  09305054

  09305055

  09305056

Q.3 Factorize:

              09305057

     (L.B. 2014) 09305058

  09305059

  09305060

  09305061

  09305062

  09305063

  09305064

Q.4 Factorize:

 

09305065

  09305066

 09305067

 

09305068

 09305069

Q.5 Factorize:

    (Board 2014)  09305070

  09305071

  09305072

 093050073

Q.6 Factorize:

               09305074

  09305075

  09305076

          (Board 2014)    09305077

Q.  Define Remainder Theorem.        09305078

Application of reminder theorem:

Example 1 09305079

Find the remainder when  is divided by

  (i) x – 3  (ii) x + 3   (iii) 3x + 1   (iv) x=0

Example 2 09305080

Find the value of k if the expression  leaves a remainder of 2 when divided by .

Q. Define Zero of a polynomial. 09305081

Q.  Define Factor Theorem. 09305082

Example 1 09305083

Determine if  is a factor of 

Example 2 09305084

Find a polynomial  of degree 3 that has 2, 1, and 3 as zeros (i.e., roots).




 


18. Exercise 5.3

 

Q.1 Use the remainder theorem to find the remainder, when. 09305085

  09305086

 09305087

 is divided by (x + 2)

09305088

 is divided by 2x+1 09305089

 is divided by x + 2 

09305090

Q.2(i) If (x+2) is a factor of   then find the value(s) of k. 09305091

 (ii) If (x 1) is factor of   then find the value of k. 09305092

Q.3 Without actual long division determine whether 09305093

(i) (x  2) and (x  3) are factors of 09305094

 (ii)(x – 2), (x + 3) and (x  4) are factors of            09305095

Q.4 For what value of m is the polynomial exactly divisible by x+2? 09305096

Q.5 Determine the value of k if  and q (x)= x3 – 4x + k. Leaves the same remainder when divided by x3. 09305097

Q.6 The remainder of dividing the polynomial   by (x + 1) is 2b. Calculate the value of ‘a’ and ‘b’ if this expression leaves a remainder of (b + 5) on being divided by (x  2) 09305098

Q.7 The polynomial   has a factor (x + 4) and it leaves a remainder of 36 when divided by (x2). Find the value of   and m. (Board 2013) 09305099

Q.8 The Expression  leaves remainder of 3 and 12 when divided by (x1) and (x+2) respectively. Calculate the values of   and m. 09305100

Q.9 The expression   is exactly divisible by . Find the values of a and b. 09305101

Q.  Define Rational Root Theorem.09305102

Example 09305103

Factorize the polynomial , by using Factor Theorem.

 is a zero of P(x).

Hence   is the third factor of P(x).

Thus the factorized form of 

  

 

Exercise 5.4

 


Factorize each of the following cubic polynomials by factor theorem. 09305104

Q.1             09305105

Q.2    09305106

Q.3    09305107

Solution:

Let  

Expected zeros of P(x) are  1,  2, 5

 

 

        

        

        

So,  x = 1 is not a zero of P(x)

 

 

 

           

 

So, x = 1 is a zero of P(x).

 

 

 

 

         

 

So, x = 2 is a zero of P(x).

 

 

 

 

 

 

 

 

 

         

 

 

 

 

 

Q.4 09305108

Q.5 09305109

Q.6    09305110

Q. 7 09305111

Q.8       (Board 2015) 09305112

 


Review Exercise 5    OBJECTIVE

Q.1 Multiple Choice Questions. Chose the correct answer.

 

57. The factor of x25x+6 are: __ 09305113

      (a)  x +1, x  6 (b) x 2, x3    (Board 2014)

      (c)  x + 6, x 1 (d) x +2 , x + 3

58. Factors of 8x3 + 27y3 are:___ 09305114

(a) (2x+3y) (4x29y2)

(b) (2x-3y)  (4x2 – 9y2)

(c) (2x + 3y)  (4x2 – 6xy + 9y2)

(d) (2x3y) (4x2 + 6xy + 9y2)

59. Factors of 3x2 x2 are:(Board 2013,14)09305115    

(a) (x+1) (3x2) (b) (x+1) (3x+2)  

(c) (x1) (3x2) (d)(x1) (3x+2)

60. Factors of a4 4b4 are: ___ 09305116

(a)  (ab) (a+b) (a2+4b2)            (Board 2014)

(b)  (a22b2) (a2 + 2b2)

(c)  (ab) (a+b)  (a24b2)

(d)  (a2b) (a2+ 2b2)

61. What will be added to complete the square of 9a212ab?___ 09305117

(a) –16 b2 (b) 16 b2 (Board 2013, 15)

(c) 4b2 (d) –4b2

62. Find m so that x2 + 4x+m is a complete square: 09305118

(a) 8 (b) 8

(c) 4 (d) 16

63. Factors of 5x2 – 17xy 12y2 are___09305119

(a)  (x+4y) (5x+3y)   (b)  (x4y) (5x – 3y)

(c)  (x4y) (5x + 3y)  (d)  (5x – 4y) (x +3y)

64. Factors of  are___ 09305120

(a)      

 (b)  

(c)        

(d) 

65. If x–2 is a factor of 

p(x) = x2+2kx+8, then k = __ 09305121

(a)  –3 (b) 3

(c)  4 (d) 5

66. 4a2+4ab+(…..) is a complete square

(a)  b2 (b) 2b 09305122

(c)  a2 (d) 4b2

67. 09305123

(a)    (b)  

(c)      (d)  

68. (x+y) (x2 – xy + y2) = ___ 09305124

(a)  x3 y3 (b)  x3 + y3

(c)  (x+y)3 (d)  (x – y)3

69. Factors of x4 – 16 is ___ 09305125

(a)  (x2)2

(b)  (x2) (x+2) (x2+4)

(c)  (x2) (x+2)

(d)  (x+2)2

70. Factors of 3x – 3a + xy – ay. 09305126

(a)  (3+y) (xa) (b)  (3y) (x+a)

(c)  (3y) (xa) (d)  (3+y) (x+a)

71. Factors of pqr + qr2 –pr2 – r3 is: 09305127

(a) r(p+r) (qr) 

(b) r(pr) (q + r)

(c) r(pr) (qr)

(d) r(p+r) (q+r)

72. If   is a factor of  , then remaider is: 09305128

(a)    (b)  

(c)    (d)  1

73. What is the value of   at  ? 09305129

(a)   (b) 3

(c)  – 3 (d) 4

74. What is the value of   at ? 09305130

(a) 9 (b) 8

(c)  2 (d) 7

75. 09305131

(a)   (b)  

(c)    (d)   

76. 09305132

(a)   

(b)  

(c)        

(d)   

77. How many factors of a cubic expression are there? 09305133

(a) zero (b)   1

(c) 2 (d) 3

78. If a polynomial  is divided by a linear divisor  , then the remainder is:  09305134

(a) zero (b)   a

(c) p (a) (d) (x – a)

79. If a polynomial   can be expressed as  , then each of the polynomial   and   is called a _________ of  . 09305135

(a) remainder (b)   factor

(c) zero (d)   product

80. (x – y) (x2 + xy + y2) = ___ 09305136

(a)  x3 y3 (b)  x3 + y3

(c)  (x+y)3 (d)  (x – y)3








 

 

Q.2. Completion items fill in the blanks. 09305137

i. x2 + 5x + 6 = …………. 09305138

ii. 4a2 – 16 = ………….. 09305139

iii. 4a2 + 4ab + (………) is a complete square. 09305140

iv.   = ……….. 09305141

v. (x + y) (x2 – xy + y2) = ………. 09305142

vi. Factorized form of x4 – 16 is 09305143

vii. If x – 2 is a factor of p(x) = x2+2kx + 8, then k =  ……. 09305144

 

Q.3.Factorize the following:

(i) x2 + 8x + 16 – 4y2 09305145

 (ii) 4x2 – 16y2 09305146

 (iii) 9x2 + 27 x + 8 09305147

 (iv) 1 – 64 09305148

 (v) 8x3 –  09305149

 (vi) 2y2 + 5y – 3 09305150

 (vii) x3 + x2 – 4x – 4 09305151

 (viii)  25m2 n2 + 10mn + 1 09305152

 (ix) 1 – 12 pq + 36 p2 q2 09305153

Q.4.Factorize the following:

(i) 09305154

(ii) 09305155

(iii) 09305156

 (iv) 09305157


(v) 09305158

Q5. What will be added to complete the square of  ? 09305159

Q6. Find m so that x2 + 4x+m is a complete square. 09305160


UNIT 7

 


a.

 

Q. Define linear equation in one variable and write down its standard form. 09307001

Q. What is Solution of Equation? 09307002

Q. Define Equivalent Equations. 09307003

Q.    Define Identity. 09307004

Q.  Define inconsistent equation.

Example 1:

Solve the equation    09307005

Example 22                09307006

Solve  

Example 3 09307007

  Solve  

 

Q.   Define Radical Equation.        09307008

Q.   What is Extraneous Solution?  09307009

Example 1  Solve the equations    09307010

  (a)     (b)  

Example 2 09307011

   Solve and check:    = 0

 Example 3 09307012

Solve  

 


19. Exercise 7.1

20.          

 

Q.1 Solve the following equations. 09307013

(i)           09307014

(ii)   (Board 2014)  09307015

 (iii)   09307016

 (iv)    09307017

 (v) 09307018

 (vi)   ,    09307019

(vii)   

09307020

 (viii)    09307021

(Board 2014)

(ix)  09307022

 (x)  

09307023 (Board 2014)

Q.2 Solve each equation and check for extraneous solution, if any.     09307024

(i)           09307025

(ii)    (Board 2015)  09307026

 

 (Board 2014) 09307027

 (iv) 09307028

(Board 2015)

 (v) 09307029

 (vi) 09307030

 (vii) or    09307031

 (viii)       09307032

Q.  Define Absolute Valued Equation.

09307033

Example 1: 09307034

Solve and check   |2x + 3| = 11

Example 2: 09307035

Solve |8x  3| = |4x + 5| (Board 2015)


Example 3:

Solve and check |3x + 10| = 5x + 6 09307036

 

___________________________________________________________________________________________________________________________________________________________________

21. Exercise 7.2


 

Q.1 Identify the following statements as True or False. 09307037

(i)  has only one solution. 09307038

(ii)  All absolute value equations 

have two solutions.      09307039

(iii) The equation   is             09307040

equivalent to  . 

(iv) The equation   

has no solution.    09307041

(v) The equation   is 

equivalent to   

or      09307042

Q.2 Solve for ‘ ’. 09307043

(i) 09307044

(ii) 09307045

(iii) (Board 2013) 09307046

 (iv) 09307047

 (v) 09307048

 (vi) 09307049

 (vii) 09307050

(viii) (Board 2015) 09307051



 Example 1: 09307052

Solve  

Example  2: 09307053

           Solve  , where  .

Example 3 Solve the double inequality 

2 <  , where  . 09307054

 Example 4: 09307055

Solve the inequality  



 


i. Exercise 7.3 


 

Q.1  Solve the following inequalities. 09307056

(i)         09307057

(ii)           09307058

(iii)         09307059

(iv)     09307060

 (v) 09307061

(vi)  

09307062

 (vii)   09307063

 (viii)  09307064

Q.2 Solve the following inequalities. 09307065

(i)     09307066

 (ii)   09307067

 (iii) 09307068

 (iv) 09307069

(v)    (Board 2014)  09307070

 (vi)     09307071

(vii)   09307072

(viii)    09307073

 

 

22. Review Exercise 1    OBJECTIVE

Q.1 Choose the correct answer: 

 

81. Which of the following is the solution of the inequality 3 – 4x  11? 

(Board 2014)     09307074

(a) 8 (b) 2

(c)     (d) None of these

82. A statement involving any of the symbols <, > or  or  is called:

09307075

(a)  Equation    

(b)  Identity 

(c)  Inequality   

(d)  Linear equation

83. x = ________ is a solution of the inequality 2 < x <     09307076

(a) 5    (b) 3   (c) 0  (d)  

84. If x is no larger than 10, then:

(Board 2015) 09307077

(a) (b)  

(c) x < 10 (d) x > 10

85. If the capacity c of an elevator is at most 1600 pounds, then_  09307078

(Board 2013, 15)

(a)  c < 1600 (b)  

(c)  (d)  c > 1600

86. x=0 is a solution of the inequality:

(Board 2014) 09307079

(a)  x > 0

(b)  3x + 5 < 0 

(c)  x + 2 < 0

(d)  x  2 < 0   

87. The linear equation in one variable x is:           09307080

(a) ax + b = 0     

(b) ax2 + bx + c = 0

(c) ax + by + c = 0

(d) ax2 + by2 + c = 0

88. An inconsistent equation is that whose solution set is: 09307081

(a) Empty     (b) Not empty

(c) Zero        (d)   Positive

89. Absolute value of a real number a is defined as: 09307082

(a)  

(b)  

(c)  

(d) None of these

90.   is equivalent to:  09307083

(a) x = a  or  x = a

(b)  

(c)  

(d) None of these 

91. A linear inequality in one variable x is:    09307084

(a) a x + b > 0,         a  0

(b) ax2 + bx + c < 0, a  0

(c) ax +by + c > 0,    a  0

(d) ax2 + by2 + c < 0, a  0


92. Law of Trichotomy is … 

    09307085

(a) a < b or a = b or a > b

(b) a < b or a = b

(c) a < b or a > b

(d) None of these 

93. Transitive law is____    09307086

(a) a < b and b < c, then a < c

(b) a > b and b < c, then a > c

(c) a > b and b < c, then a = c

(d) None of these

94. If a > b, c > 0 then:         09307087

(a) a c < bc   (b) ac > bc

(c) ac = bc    (d) ac   bc

95. If a > b, c > 0 then:          09307088

(a)    (b)  

(c)    (d)  

96. If a > b, c < 0, then:           09307089

(a)    (b)  

(c)    (d)  

97. If a, b  R then:  b   0      09307090

(a)     (b)    

(c)   

(d)  

98. When the variable in an equation occurs under a radical, the equation is called a _______ equation.    09307091

(a) Radical       (b)  Absolute value

(c) Linear (d)  None of these 

99.   has only ___ solution.     09307092

(a) one   (b) two

(c) three   (d) none of these

100. The equation is equivalent to:

(a)           09307093

(b) x = –2 or x = 2

(c) x = 2 or x =  

(d) x = 2 or x = 

101. An __ is equation that is satisfied by every number for which both sides are defined:         09307094

(a)  Identity       (b) Conditional

(c)  Inconsistent    (c) In equation

102. An__ equation is an equation whose solution set is the empty set: 09307095

(a)  Identity      (b)  Conditional

(c) Inconsistent   (d) None

103. A _ equation is an equation that is satisfied by atleast one number but is not an identity:          09307096

(a) Identity     (b) Conditional

(c) Inconsistent    (d) None

104. x + 4 = 4 + x is _ equation: 09307097

(a) Identity     (b)  Conditional

(c) Inconsistent   (d) None

105. 2x + 1 = 9 is ___ equation: 09307098

(a)  Identity    (b)  Conditional

(c)  Inconsistent (d)  None

106. x = x + 5 is ___ equation: 09307199

(a) Identity   (b) Conditional

(c) Inconsistent  (d) None

107. Equations having exactly the same solution are called ___ equations.       

(a) equivalent    (b) Linear  09307100

(c) Inconsistent   (c) In equations

108. A solution that does not satisfy the original equation is called ____ solution:          09307101

(a) Extraneous       (b) Root

(c) General       (d) Proper

109. If   is positive, then:         09307102

(a)        (b)   

(c)        (d)  

110. If   is negative, then:         09307103

(a)        (b)   

(c)        (d)  

111. If   is zero, then:        09307104

(a)        (b)   

(c)        (d)  

112. If   then   is:            09307105

(a) Positive       (b) Negative

(c) Zero       (d) Complex

113. If  , then  is: 09307106

(a) Positive       (b) Negative

(c) Zero       (d) Complex

114. Which of the following inequality is strict? 09307107

(a)        (b)  

(c)        (d)  

115. Which of the following inequality is non-strict? 09307108

(a)        (b)  

(c)        (d)  

116. If   and  , then 09307119

(a)        (b)  

(c)          (d)   

117. If   and , then 09307110

(a)        (b)  

(c)          (d)   

118. The sign of inequality is reversed if each side is multiplied by _____ real number. 09307111

(a) zero       (b) positive

(c)  negative       (d)  fractional


119. If   and  , then: 09307112

(a)        (b)  

(c)          (d)   






 

Q.2 Identify the following statements as True or False. 09307113

(i) The equation 3x – 5 = 7 – x is a linear equation. 09307114

(ii) The equation x – 0.3x = 0.7x is an identity. 09307115

(iii) The equation -2x + 3 = 8 is equivalent to –2x = 11. 09307116

(iv) To eliminate fractions, we multiply each side of an equation by the L.C.M. of 

denominators 09307117

(v) 4(x + 3) = x + 3 is a conditional equation. 09307118

(vi) The equation 2(3x + 5) = 6x + 12 is an inconsistent equation. 09307119

(vii) To solve   x = 12, we should multiply each side by  . 09307120

(viii) Equations having exactly the same solution are called equivalent equations. 09307121

(ix) A solution that does not satisfy the original equation is called extraneous solution.  09307122

_________________________________________________________________________

 

Q.3 Answer the following short questions.           09307123

(i) Define a linear inequality in one variable.           09307124

 (ii) State the trichotomy and transitive properties of inequality. 09307125

 (iii) The formula relating degrees Fahrenheit to degrees Celsius is 

. For what value of C is F < 0?

(iv) Seven times the sum of an integer and 12 is at least 50 and at most 60. Write and solve the inequality that expresses this relationship. 09307126

Q.4 Solve each of the following and check for extraneous solution, if any.      09307118

(i)         09307127

Squaring both sides

(ii)     09307128

Q.5 Solve for x         09307129

(i)       09307130

(ii) 09307131

Q.6 Solve the following inequality.  09307132     (i)                 09307133

 (ii)           09307134

Q7. Solve: 09307135

 

Q.8 What are strict and non strict inequalities?






 



UNIT 8 




a.

 

Q. Define Ordered Pair of Real Numbers.

09308001

Q.  Define Cartesian Plane. 09308002

Q. What do you mean by coordinates of a point ?

Q Define abscissa and ordinate.

Q. What is a line segment?


Drawing different geometrical Shapes in Cartesian Plane

(a) Line-Segment

Example 1: 09308003

Let P(2, 2) and Q(6, 6) be two points.


Example 2: 09308004

Plot points P(2, 2) and Q(6, 2). By joining them, we get a line segment PQ parallel to x-axis,


Example 3: 09308005

Plot points P(3, 2) and Q(3, 7). By joining them, we get a line segment PQ parallel to 

y-axis. In this graph abscissas of both points are equal.


(b) Triangle

Example1: 09308006

Plot the points P(3, 2), Q(6, 7) and R(9, 3). 





Example 2: 09308007

For points O(0, 0), P(3, 0) and 

R(3, 3), the triangle OPR is constructed. 



(c) Rectangle

Example 1 09308008

Plot the points P(2, 3), Q(2, 0), S(2, 0) and R (2, 3). Joining the points P, Q ,S and R, we get a rectangle PQSR.




 


 Exercise 8.1:

 

Q.7 Determine the quadrant of the coordinate plane in which the following points lie. 09308009

Ans.

(i) P (4, 3) IIquadrant(Board 2013)

(ii) Q (5, 2) IIIquadrant

(iii) P (2, 2) Iquadrant

(iv) S(2, 6) IVquadrant(Board 2013)

2.Draw the graph of each of the following.09308010

(i) x = 2 09308011 (ii) x = – 3 09308012

(iii) y = – 1 09308013 (iv) y = 3 09308014

(v) y = 0 09308015 (vi) x = 0 09308016

(vii) y = 3x 09308017 (viii) – y = 2x0930818

(ix) 09308019 (x) 3y = 5x09308020

(xi)  2x – y = 009308021 (xii)2x – y = 209308022

xiii)x – 3y + 1=009308023(xiv)  3x – 2y + 1 = 0

09308024

(i) x = 2

(ii)  

(iii) (Board 2015)

(iv)

(v)  

(vi)  

(vii) y = 3x(Board 2014)

Table for y = 3x 

x –1 0 1

y –3 0 3


(viii) y =  2x

Table for –y = 2x 

x –1 0 1

y 2 0 –2


(ix) x = 12 

(x) 3y  = 5x

Table for 3y = 5x  

x –3 0 3

y –5 0 5


(xi) 2x–y = 0 (Board 2014)

Table for 2x – y = 0

x –1 0 1

y –2 0 2


(xii) 2x  y = 2

Table for 2x – y = 2

or 2x – 2 = y 

y = 2x -2

x 0 1 2 3

y –2 0 2 4


(xiii) x  3y  + 1 = 0

Table for x – 3y + 1 = 0 

or x + 1 = 3y

3y = x +1

y = 

x –1 2 5

y 0 1 2


(xiv) 3x2y + 1 = 0

or 3x + 1 = 2y 

2y = 3x +1 y = 

Table for 3x2y + 1 = 0

x –1 1 3

y –1 2 5


Q.3 Are the following lines: 09308025

(i) Parallel to xaxis

(ii) Parallel to yaxis

(i) 2x  1 =  3 09308026

2x = 3 + 1x =   = 2

Parallel to yaxis


(ii) x + 2 = 1 09308027

x  =12

x = 3

Parallel to yaxis


(iii) 2y + 3 = 2 09308028

2y = 2  3y =   

Parallel to xaxis


(iv) x + y = 0 09308029

x = y

Graph of x = y is neither parallel to x-axis nor parallel to y-axis but passes through the origin.

(v) 2x  2y = 0 09308030

2x = 2y

x = y

Graph of x = y is neither parallel to x-axis nor parallel to y-axis but passes through the origin.


Q.4 Find the value of m and c of the following lines by expressing them in the form y = mx + c 09308031

(a) 2x + 3y   1 = 0 09308032

 (b) x 2y = 2 09308033

 (c) 3x + y  1 = 0 09308034

 (d) 2x  y = 7 09308035

 (e) 3  2x + y = 0 09308036

 (f) 2x = y + 3 09308037

Q.5Verify whether the following points lies on the line 2x  y + 1 = 0 or not. 09308038

(i) (2, 3)        x = 2, y = 3 09308039

 (ii) (0, 0)        x = 0, y = 0 09308040

 (iii) (1, 1)        x = 1, y = 1 09308041

 (iv) (2, 5)        x = 2, y = 5 09308042

 (v) (5, 3)    x = 5, y = 3 09308043


 

Conversion Graphs

(a) Example: (Kilometre (Km) and Mile (M) Graphs) 09308044

To draw the graph between kilometre (Km) and Miles (M), we use the following relation:

One kilometre = 0.62 miles,

(approximately)

And One mile = 1.6 km (approximately)



 

(ii) The conversion graph of kilometer against mile is given by

y = 1.6x (approximately)

If y represents kilometers and x a mile, then the values x and y are tabulated as:

x 0 1 2 3 4 ….

y 0 1.6 3.2 4.8 6.4 …

(b)Conversion Graph of Hectares andAcres

(i)The relation between Hectare and Acre is defined as: Hectare =  Acres

= 2.5 Acres (approximately)

In case when hectare = x and 

acre= y, then relation between them is given by the equation, y = 2.5x

If x is represented as hectare along the horizontal axis and y as Acre along

y-axis, the values are tabulated below:

x 0 1 2 3 4 ….

Y 0 2.5 5.0 7.5 10 ….

 (c) Conversion Graph of Degrees Celsius and Degrees Fahrenheit 09308045

(i) The relation between Celsius (C) and degree Fahrenheit (F) is given by

F   C + 32 09308046

The value of Fat C = 0 is obtained as

F =  0 + 32 = 0 + 32 = 32

Similarly, 

F =  10 + 32 = 18 + 32 = 50,

F =  20 + 32 = 36 + 32 = 68,

F =  100 + 32 = 180 + 32 = 212

We tabulate the values of C and F.

C 0o 10o 20o 50o 100o…

F 32o 50o 68o 122o 212o…

(d) Conversion graph of US$ and Pakistani Currency 09308047

The daily News, on a particular day informed the conversion rate of Pakistani currency to the US$ currency as.

1 US$ = 66.46 Rupees

If the Pakistani currency y is an expression of US$ x, expressed under the rule 

y = 66.46 x  66x (approximately)

Then draw the conversion graph.


x 1 2 3 4 …

y 66 132 198 264 …

 

 Exercise 8.2:

 

Q.1Draw the conversion graph between 1 litre and gallons using the relation 9 litres = 2 gallons (approximately) and taking litres along horizontal axis and gallons along vertical axis.From the graph,read:09308048

(i) The number of gallons in 18 litres09308049

(ii) The number of litres in 8 gallons09308050

Q.2 On 15.03.2008 the exchange rate of Pakistani currency and Saudi Riyal was as, under 1 S. Riyal = 16.70 rupees.

If Pakistani currency y is an expression of S.Riyal x, expressed under the rule y = 16.70x then draw conversion graph between two currencies by taking S. Riyal along xaxis. 09308051

Q.3 Sketch the graph of each of the following lines: 09308052

(a) x3y  + 2 = 0 09308053

(b) 3x  2y  1 = 0 09308054

 (c) 2y  x + 2 = 0 09308055

 (d) y2x  = 0 y = 2x 09308056

 (e) 3y – 1 = 0 09308057

(f) y + 3x = 0 09308058

(g) 2x + 6  = 0 09308059

Q.4 Draw the graph for following relations: 09308060

(i) One mile=1.6 km 09308061

Let mile be represented by x and km by y:

y =1.6 x

(ii) One acre =0.4 Hectare 09308062

Let acres = x 

Hectare   = y


 

(iii) (Board 2014) 09308063

The value of F at C = 0 is obtained as

 

 

 

 

 

 

We tabulate the values of C and F

C 0o 5 o 10o 15o 20o 25o

F 32o 41o 50o 59o 68o 77o

 



iv.  One Rupee =   $ Or 86 Rupees = 1 $  Or 1$ = 86 Rupees 09308064

Let dollarsare x and rupees are y 

y = 86x.

x 0 1 2 3 4

y 0 86 172 258 344


 

Example 09308065

Solve graphically, the following linear system of two equations in two variables   andy;

 ................(i)

 …………..(ii) 

 

 

Exercise 8.3:

 

Solve the following pair of equations in x and y graphically. 09308066

Q.1 x + y = 0 and 2x  y + 3 = 009308067

Q.2 x  y + 1 = 0 and x  2y = 1

09308068

Q.3 2x + y = 0 and x + 2y = 2 09308069

Q.4 x + y  1 = 0 09308070

x y + 1 = 0

Q.5 2x + y  1 = 0,  x = y 09308071

23. Review Exercise 8OBJECTIVE

Q.1 Chose the correct answers.

 

120. If (x–1, y+1) = (0, 0), then (x, y) is:09308072

(a) (1, 1) (b)   (1, 1)(Board 2013, 14)

(c) (1, 1) (d)   (1, 1)

121. If (x, 0) = (0, y), then (x, y) is:09308073

(a) (0, 1) (b)(1, 0) (Board 2013)

(c) (0, 0) (d)(1, 1)

122. Point (2 3) lies in quadrant: 09308074

(a) I (b) II(Board 2014, 15)

(c) III (d) IV

123. Point (3, 3) lies in quadrant:09308075

(a) I (b) II(Board 2014,15)

(c) III (d) IV

124. If y = 2x + 1, x = 2 then y is: 09308076

(a) 2 (b) 3(Board 2013)

(c) 4 (d) 5

125. Which ordered pair satisfy the equation y = 2x: 09308077

(a) (1, 2) (b) (2, 1)

(c) (2, 2) (d) (0, 1)

126. The real numbers x, y of the ordered pair (x, y) are called _____ of point P(x,y) in a plane. 09308078

(a) co-ordinates(b) x co-ordinates

(c)  y-coordinates(d)  ordinate

127. Cartesian plane is divided into __ quadrants. 09308079

(a) Two (b) Three

(c) Four (d) Five

128. The point of intersection of two coordinate axes is called: 09308080

(a)  Origin          (b) Centre

(c)  X-coordinate     (d)  y-coordinate

129. The x-coordinate of a point is called__ 09308081

(a)  Origin (b)  abcissa

(c)  y-coordinate (d)  Ordinate

130. The y-coordinate of a point is called:

(a) Origin     (b) x-coordinate

(c) y-coordinate  (d) ordinate09308082

131. The set of points which lie on the same line are called ___ points. 09308083

(a) Collinear

(b) Similar

(c) Common

(d) None of these

132. The plane formed by two straight lines perpendicular to each other is called: (a) Cartesian plane 09308084

(b) Coordinate axes

(c) Plane

(d) None of these

133. An ordered pair is a pair of elements in which elements are written in specific:

(a) Order (b) Array 09308085

(c) Point (d) None

134. Point  lies in quadrant.

(a) I (b) II 09308086

(c) III (d) IV


135. Point   lies in quadrant.

(a) I (b) II 09308087

(c) III (d) IV

136. Point   lies in quadrant.

(a) I (b) II 09308088

(c) III (d) IV

137. Which of the following lines is horizontal?

(a)  (b) 09308089

(c) (d)  

138. Which of the following is vertical line?

(a)    (b)    09308090

(c)    (d)  

139. ______ is a line on which origin lies.

(a)    (b)  09308091

(c)    (d)  

140. Which of the following points is on the x-axis? 09308092

(a)    (b) 

(c) (d)  

141. Which of the following points is on the y-axis? 09308093

(a)    (b) 

(c) (d)  

142. Which of the following points is on the origin? 09308094

(a)    (b) 

(c) (d)  

143. Which of the following lines is parallel to x-axis? 09308095

(a)    (b) 

(c) (d)  

144. Which of the following lines is parallel to y-axis? 09308096

(a)    (b)  

(c)  (d)  

145. If two lines do not intersect, their solution set will be: 09308097

(a) Singleton Set (b) Empty Set

(c) Not Possible (d) None

146. y = x is a line on which ___ lies.

(a)    (b)     09308098

(c)    (d)  

 


Q.2 Identify the following statements as True or False. 09308099

(i) The point O(0, 0) is in quadrant II. 09308100

(ii) The point P(2, 0) lies on x –axis. 09308101

(iii) The graph of x = –2 is a vertical line.  09308102

(iv) 3 – y = 0 is a horizontal line. 09308103

(v) The point Q(–1, 2) is in quadrant III. 09308104

(vi) The point R(–1, –2) is in quadrant IV. 09308105

(vii) y = x is a line on which origin lies. 09308106

(viii) The point P(1, 1) lies on the line x + y = 0. 09308107

(ix) The S(1, –3) lies in quadrant III. 09308108

(x) The point R(0, 1) lies on the x-axis. 09308109

 

Q. No.3 Draw the following points on the graph paper: (–3, –3), (–6, 4), (4, –5), (5, 3)

09308110


Q. No.4 Draw the graph of the following:

(i) x= – 6 09308111


(ii) y = 7 09308112


(iii)  x =  09308113


(iv) y =  09308114



 

(v) y = 4x 09308115


(vi) y = – 2x + 1 09308116

 

Q. No. 5 Draw the graph of the following:

(i) y = 0.62x 09308117

(ii) y = 2.5x 09308118

x 0 1 2 3

y 0 2.5 5 7.5


Q. No. 6   Solve the following pair of equations graphically.

(i) x – y =1 09308119

x + y = 

 (ii) x = 3y      2x – 3y = – 6 09308120

 (iii)   (x + y) = 2 09308121

(iv)   (x – y) = - 1 09308122


Q7. If y = 2x +1, then find the value of y for x = 2. 09308123

 


UNIT 9 




a.

 

24. Q. Define Plane Geometry and Coordinate Geometry.                              09309001

Q. Derive Distance Formula.     09309002

25. Use of Distance Formula

26. Example 1: 09309003

Using the distance formula, find the distance between the points. 

(i) P(1, 2)   and  Q(0,3)

(ii) S(1, 3) and  R(3, 2)

(iii) U (0, 2) and  V(3, 0)

(iv)  

Q. Define Collinear or Non-Collinear Points.

(Board 2013)09309004

27. Use of Distance Formula to show the Collinearity of Three or more Points in the Plane:

28. Examples: 09309005

Using distance formula show that the points.

(i) P(2,1), Q(0, 3) and R(1, 5) are collinear.

(ii) The above P,Q,R and S (1,–1) are non collinear 


Q.  Define Triangle.             09309006

29. Q. Define Equilateral Triangle.  09309007

30. Example: 09309008

The triangle OPQ is an equilateral triangle since the points O(0,0),   and 




Q.  Define Isosceles Triangle.  09309009

Ans.  Isosceles Triangle:

An isosceles triangle is a triangle which has two of its sides with equal length while the third side has a different length. 

31. Example: 09309010

The triangle PQR is an isosceles triangle as for the non-collinear points P(1,0), Q(1, 0) and R(0, 1) shown in the following figure.



Q. Define Right Angle Triangle.  09309011

32. Example: 09309012

Let O(0, 0), P(3, 0) and Q(0, 2) be three non-collinear points. Verify that triangle OPQ is right-angled. 

Q.  Define Scalene Triangle.         09309013

33. Example: 09309014

       Show that the points P(1, 2), Q(2, 1) and R(2, 1) in the plane form a scalene triangle.


Q.  Define Square.                           09309015

34. Example:    09309016

If A(2, 2), B(2, 2), C(2, 2) and D(2, 2) be four non-collinear points in the plane, then verify that they form a square ABCD.


Q.  Define Rectangle.                       09309017

Example: Show that the points A (–2, 0),       B (–2, 3), C(2, 3) and D (2,0) form a rectangle. 

 Using distance formula.   09309018

Q.  Define Parallelogram.                    09309019

35. Example: 09309020

       Show that the points A(2, 1), B(2, 1), C(3, 3) and D(1, 3) form a parallelogram.

Q.  Derive Mid-Point Formula.  09309021

36. Example 1: 09309022

Find the mid-point of the line segment joining A(2,5) and B(1, 1). 

Example 2  09309023

Let P(2, 3) and Q (x, y) be two points plane in the plane such that R(1, –1) is the mid-point of the points P and Q. Find x and y. 

37. Example 3: 09309024

Let ABC be a triangle as shown below. If   and  are the middle points of the line-segments AB, BC and CA respectively, find the coordinates of M1, M2 and M3. Also determine the type of the triangle M1M2M2.





38. Example 4 09309025

Let O(0,0), A(3,0) and B(3,5) be three points in the plane. If   is the mid point of AB and M2 of OB, then show that  .

 

39.

40. Exercise 9.1


 

Q.1 Find the distance between the following pairs of points 09309026

(a) 09309027

 (b) 09309028

 (c) 09309029

 (d) (Board 2013)

  09309030

 (e) (Board 2013, 14)  09309031

 (f) A(0,0)  , B(0,-5) (Board 2013) 09309032

Q2. Let P be the point on x-axis with x-coordinate a and Q be the point on y-axis with y-coordinate b, as given below. Find distance between P and Q. 09309033

ii) 09309035

iii) 09309036

iv)      09309037

v) 09309038

vi) 09309039


 


41. Exercise 9.2


 

Q.1 Show whether the points with vertices   and   are vertices of an equilateral triangle or an isosceles triangle?

09309040

Q.2 Show whether or not the points with vertices   and   form a square? 09309041

Q.3 Show whether or not the points with coordinates   and   are vertices of a right triangle? 09309042

Q.4 Use the distance formula to prove whether or not the points   and   lie on a straight line. 09309043

Q.5 Find K given that the point  is equidistance from   and  .     09309044

Q.6 Use distance formula to verify that the points    are collinear. 09309045

Q.7 Verify whether or not the points   are vertices of an equilateral triangle. 09309046

Q.8 Show that the points 

A( 6,  5), B(5,  5), C(5,  8),   are vertices of a rectangle. Find the lengths of its diagonals. Are they equal? 09309047

Q.9  Show that the points   

 and   are the vertices of a parallelogram. 09309048

Q.10 Find the length of the diameter of the circle having centre at   and passing through . 09309049


 


 

42. Exercise 9.3


 

Q.1 Find the mid-point of the line segment joining each of the following pairs of points.

09309050

(a)     09309051

 (b) 09309052

 (c) (Board 2014, 15) 09309053

 (d)       (Board 2014) 09309054

 (e) 09309055

 (f) 09309056

Q.2 The end point P of a line segment PQ is (–3,6) and its mid point is (5,8). Find the 

co-ordinates of the end point Q.     09309057

Q.3 Prove that midpoint of the hypotenuse of a right triangle is equidistant from its three vertices   and   093090358

Q.4 O (0, 0), A(3, 0) and B(3, 5) are three points in the plane, find M1 and M2 as midpoints of the line segments  and  respectively. Find  09309059

Q.5 Show that the diagonals of the parallelogram having vertices    ,   bisect each other. 09309060

Q.6 The vertices of a triangle are P(4,6), Q(–2,–4) and R(–8, 2) show that the length of line segment joining the mid points of line segment PR, QR is  PQ.         09309061


 


Review Exercise 9    OBJECTIVE    

 

Q.1 Choose the correct answer 

 

147. Distance between points (0, 0) and (1, 1) is: (Board 2014) 09309062

(a) 0 (b) 1   

(c) (d) 2

148. Distance between the points (1, 0) and (0, 1) is: 09309063

(a) 0 (b) 1

(c) (d) 2

149. Mid-point of the points (2, 2) and (0,0) is: (Board 2015) 09309064

(a) (1, 1) (b) (1, 0)

(c) (0, 1) (d) (1, 1)

150. Mid-point of the points (2, 2) and (2, 2) is: (Board 2013, 15) 09309065

(a) (2, 2) (b) (2, 2)

(c) (0, 0) (d) (1, 1)

151. A triangle having all sides equal is called: (Board 2013) 09309066

(a)  Isosceles    (b)  Scalene

(c)  Equilateral    (d)  None of these

152. A triangle having all sides different is called: 09309067

(a)  Isosceles    (b) Scalene

(c)  Equilateral    (d)  None of these

153. The points P, Q and R are collinear if: 09309068

(a)  

(b)  

(c)  

(d) None of these

154. The distance between two points  P(x1, y1) and Q (x2, y2) in the coordinate plane is: d > 0 09309069

(a)   

(b)   

(c)    

(d)   

155. A triangle having two sides equal is called: 09309070

(a)  Isosceles    (b)  Scalene

(c)  Equilateral    (d)  None of these

156. A right angled triangle is that in which one of the angles has measure equal to: 09309071

(a) 80o (b) 90o

(c) 45o (d) 60o

157. In a right angled triangle ABC, where m ACB = 900. 09309072

(a)   

(b)  

(c)  

(d)  

158. If M is the mid-point of a line segment  , which of the following is true?

09309073

(a)  

(b)  

(c)  

(d)  

159. In a   if   the triangle will be: 09309074

(a) isosceles (b) scalene 

(c) equilateral (d) right-angled

160. If three or more than three points lie on the same line then points are called ______.

(a) non-collinear      (b) collinear 09309075

(c) parallel      (d) perpendicular

161. A ________ has two end points. 09309076

(a) line      (b) line segment

(c) ray      (d) triangle

162. A line segment has __ midpoint. 09309077

(a) one      (b) two

(c) three      (d) four

163. Each side of triangle has ____ collinear vertices. 09309078

(a) one      (b) two

(c) three      (d) four

164. A triangle is formed by _____ non-collinear points. 09309079

(a) one      (b) two

(c) three      (d) four

165. All points on x-axis are ____. 09309080

(a) collinear      (b) non-collinear

(c) perpendicular      (d) parallel

166. All points on y-axis are ____. 09309081

(a) collinear      (b) non-collinear

(c) perpendicular      (d) parallel



 


Q.2  Answer the following, which is true and which is false. 09309082

(i) A line has two end points. 09309083

(ii) A line segment has one end point. 09309084

(i) A triangle is formed by three collinear points. 09309085

(ii) Each side of a triangle has two collinear vertices. 09309086

(iii) The end points of each side of a rectangle are collinear. 09309087

(iv) All the points that lie on the x-axis are collinear. 09309088

(v) Origin is the only point collinear with the points of both the axes separately. 09309089

 

Q.3 Find distance between pairs of points 

09309090

(i)    09309091

 (ii) 09309092

(iii) 09309093

Q.4 Find the midpoint between the following pairs of points. 09309094

Solution: (i) 09309095

 (ii) 09309096

 (iii) 09309197

Q.5 Define the following: 09309198

(i) Co-ordinate Geometry 09309199

(ii) Collinear points 09309100

(iii) Non-collinear points 09309101

(iv) Equilateral Triangle 09309102

(v) Scalene Triangle 09309103

(vi) Isosceles Triangle 09309104

(vii) Right Triangle 09309105

(viii) Square 09309106

Q6. Find distance between the points   and  . 09309107

Q7.  Find distance between the points (1,0) and (0,1). 09309108

Q8. Find midpoint of the points (2,2) and (0,0). 09309109

Q9. Find midpoint of the points   and  . 09309110


 

43.


UNIT 10 



a.

 

Q. What is correspondence of Triangles?

093010001

Q.  Define Congruency of Triangles. 093010002

Q.  Define S.A.S Postulate.    093010003


 


 


 Theorem 10.1.1: 093010004

In any correspondence of two triangles, if one side and any two angles of one triangle are congruent to the corresponding, side and angles of the other, then the triangles are congruent.  

Given:

In  

           

 

 Example: 093010005

In any correspondence of two triangles, if one side and any two angles of one triangle are congruent to the correspondence side and angles of the other, then the triangles are congruent. (S.A.A  S.A.A.)

 Given:

In ABC   DEF

 ,  ,   

 

 Example: 093010006

If ABC and DCB are on the opposite sides of common base   such that

 ,  ,  , then  bisects  .

Given:

ABC and DCB are on the opposite sides of   such that   


Exercise 10.1:

 

Q.1 In the given figure. 093010007

 

Prove that

ABD CBE

Given:

 

1= 2

 

 

Q.2 From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in measure. 093010008

 Given: ABC,  the bisector of ABC, M any point on ,  perpendicular on  ,  .

 

Q.3 In a triangle ABC, the bisectors of B and C meet in a point I. Prove that I is equidistant from the three sides of ABC. 093010009

 Given:

In ABC,    are the bisectors of the angles B and C respectively.


 Theorem: 10.1.2 093010010

If two angles of a triangle are congruent, then the sides opposite to them are also congruent.

 Given:

In ABC, B  C

 Example 1: 093010011

If one angle of a right triangle is of 30o, the hypotenuse is twice as long as the side opposite to the angle.

Given:

In  ABC, mB = 90o and mC = 30o

  Example 2: 093010012

If the bisector of an angle of a triangle bisects the side opposite to it, the triangle is isosceles.

 Given:  In ABC,   bisects A and    


Exercise: 10.2

Q.1 Prove that any two medians of an equilateral triangle are equal in measure. 093010013

Given:

      An equilateral ABC, and two medians  and    

 

Q. 2 Prove that a point, which is equidistant from the end points of a line segment, is on the right bisector of the line segment.      093010014


 

 Theorem 10.1.3: 093010015

        In a correspondence of two triangles, if three sides of one triangle are congruent to the corresponding three sides of the other, then the two triangles are congruent.  (S.S.S.  S.S.S.)

 Given:

    In  C  DEF 

 

 


Corollary::

If two isosceles triangles are formed on the same side of their common base, the line through their vertices would be the right bisector of their common base. 

Given: ABC and DBC are formed on the same side of   such that

 



 

 Exercise 10.3:

 

Q.1 In the figure,  ,  .

Prove that A   C, ABC  ADC.  093010016

Given:  

 


Q.2 In the figure,  ,  .

Prove that NP,NML PLM.

 Given:      093010017

  

 

 Q.3 Prove that the median bisecting the base of an isosceles triangle bisects the vertex and it is perpendicular to the base. 093010018

Given: In isosceles  ABC,   is the base and  A is the vertex angle such that  . Median   meets side   at point D. 

Theorem 10.1.4 093010019

If in the correspondence of the two right-angled triangles, the hypotenuse and one side of one triangle are congruent to the hypotenuse and the corresponding side of the other, then the triangles are congruent. (H.S  H.S)

 

Given:

In ABC  DEF

B E (right angles)

,  

 


 Example: 093010020

If perpendiculars from two vertices of a triangle to the opposite sides are congruent, then the triangle is isosceles. 

 Given:

In ABC,  

Such that    

Exercise 10.4

 

Q.1 In PAB of figure,    , prove that     and APQ BPQ.       093010021

Given:

In PAB,   and  

 

 

Q.2 In the figure, mC = mD = 90o and    . Prove that     

and BAC ABD.     093010022

 Given:

mC = mD = 90o

 


Q.3 In the figure, mB = mD = 90o and    . Prove that ABCD is a rectangle.      093010023

Given:

m   B = m   D = 90o,     

To Prove:

ABCD is a rectangle



Review Exercise 10    OBJECTIVE

Choose the correct answer. 

 

167. ________ triangle is an equiangular triangle. 093010024

(a) A scalene    (b)  An isosceles 

(c) An equilateral (d)  A right angled

168. A _______ has two end points 093010025

(a) line (b)  line segment

(c) ray (d)  angle 

169. A ________ has no end point 093010026

(a) line (b)  line segment 

(c) ray (d)   angle

170. A _______ has one end point 093010027

(a) line (b)   line segment 

(c) ray (d)   plane 

171. In a triangle there can be only one: 

(Board 2014)              093010028

(a) acute angle   (b)   right angle 

(c) straight angle (d)  reflex angle 

172. Three points are said to be collinear, if they lie on the same:  093010029

(a) plane (b)   line 

(c) interior (d)   area 

173. Two lines can intersect at: 093010030

(a) one point  (b)  two points 

(c) no point (d)  infinite point 

174. Two ________ lines cannot intersect each other: 093010031

(a) perpendicular    (b)  parallel 

(c) non-parallel             (d)   coplanar

175. If perpendiculars from two vertices of a triangle to the opposite sides are congruent, then the triangle is.

(a) scalene (b)  isosceles 093010032

(c) equilateral  (d)  right angled 

176. All the medians of _______ triangle are equal in measure. 093010033

(a) a scalene

(b)  an isosceles

(c) an equilateral  

(d)  a right angled

177. If the bisectors of the angles of a triangle bisect the sides opposite to them, the triangle is 093010034

(a) scalene (b) isosceles 

(c) equilateral (d) right angled

178. If one angle of a right triangle is of ____ then hypotenuse is twice as long as the side opposite to this angle 

(a) 60o (b) 45o 093010035

(c) 30o (d) 0o

179. Symbol for congruent is: 093010036

(a) (b)

(c) (d)

180. Symbol for correspondence is 093010037

(a) (b) N

(c) (d) =

181. How many end points has a ray? 093010038

(a) 1 (b) 2   (Board 2015)

(c) 3 (d) 4

182. Symbolically two congruent triangles ABC and PQR are written as: 093010039

(a)

(b)    

(c)

(d)  

183. Which of the following is postulate? 

(a)       093010040

(b)  

(c)

(d)  

184. If sum of measures of two angles is 180o then angles are ____ angles. 093010041

(a) Complementary (b) Supplementary 

(c) Equal    (d) Right

185. If sum of measure of two angles is 90o then angles are _____ angles. 093010042

(a) Complementary (b) Supplementary 

(c) Congruent    (d) Acute

186. Hypotenuse is a side opposite to _____ in right angled triangle. 093010043

(a) 30o (b) 60o

(c) 90o (d) 120o

187. In equilateral triangle each angle is of ______. 093010044

(a) 30o (b) 60o

(c) 90o (d) 180o

188. Corresponding sides of congruent triangles are: 093010045

(a) equal (b) different

(c) perpendicular (d) parallel

189. Median bisecting the base angle of an isosceles triangle bisects the _____ angle. 093010046

(a) base (b) vertical

(c) right (d) acute

190. The median bisecting the base of an isosceles triangle is ___ to the base.

093010047

(a) parallel (b) perpendicular

(c) collinear (d) adjacent

191. Corresponding angles of congruent triangles are: 093010048

(a) congruent (b) non-congruent

(c) unequal (d) supplementary

192. Any two medians of an ____ triangle equal is measure. 093010049

(a) isosceles (b) equilateral

(c) acute (d) obtuse

193. An equilateral triangle is ____ triangle.

  093010050

(a) acute (b) obtuse

(c) right (d) isosceles 

 

 

Q.1 Which of the following are true and which are false? 093010051

(i) A ray has two end points. 093010052

(ii) In a triangle, there can be only one right angle. 093010053

(iii) Three points are said to be collinear if they lie on same line. 093010054

(iv) Two parallel lines intersect at a point. 093010055

(v) Two lines can intersect only in one point. 093010056

(vi) A triangle of congruent sides has non-congruent angles. 093010057


Q.2 If ABC LMN, then 093010058

(i) mM 093010059

(ii) mN 093010060

(iii) mA 093010061


Q.3 If ABC LMN, then find the unknown x. 093010062

 

 

Q.4 Find the value of unknowns for the given congruent triangles. 093010063

 

ABD  ACD

Q.5 If PQR ABC, then find the unknowns. 093010064

 

 




UNIT 11 



b.

 

 Theorem 11.1.1:    093011001

In a parallelogram

(i) Opposite sides are congruent.

(ii) Opposite angles are congruent.

(iii) The diagonals bisect each other.

Given:  In a quadrilateral ABCD,   and the diagonals ,   meet each other at point O.


 

Example:     093011002

 

The bisectors of two angles on the same side of a parallelogram cut each other at right angles.


 Given:

A parallelogram ABCD, in which

 

The bisectors of A and B cut each other at E.

EXERCISE 11.1:

Q.1 One angle of a parallelogram is 130o. Find the measures of its remaining angles. 093011003

 Given:   

ABCD is a parallelogram that

mA = 130o

 To Find   

The measures of B, C, D 

Q.2 One exterior angle formed on producing one side of a parallelogram is 40o. Find the measures of its interior angles. 

Given:  093011004

ABCD is a parallelogram, side AB has been produced to p to form exterior angle mCBP = 40o and name the interior angles as 1, C, D, A.

 Required:   

  To find the degree measures of 1, C, D, A

 


 

 Theorem 11.1.2:    093011005

If two opposite sides of a quadrilateral are congruent and parallel, it is a parallelogram. 

 

 Given:   

In a quadrilateral ABCD,

 

EXERCISE 11.2:

Q. 1 Prove that a quadrilateral is a parallelogram if its 093011006

(a) Opposite angles are congruent.      093011007

(b) Diagonals bisect each other.        093011008

Given:   Given ABCD is a quadrilateral.

mA = mC,

mB = mD

 To prove: ABCD is a parallelogram.

 


Q. 2 prove that a quadrilateral is a parallelogram if its opposite sides are congruent. 

 Given    093011009

In quadrilateral

ABCD,  ,

  

 Required:   

ABCD is a || gm

 

 Construction:   

Join point B to D and name the angles 1, 2, 3 and  4

 

Theorem 11.1.3:   

The line segment, joining the mid-points of two sides of a triangle, is parallel to the third side and is equal to one half of its length. 093011010

Given:    In ABC, the mid-points of  and   are L and M respectively. 









 To Prove:   

  and  

 Construction:   

Join M to L and produce   to N such that . Join N to B and in the figures name the angles 1, 2, 3 and  4 as shown.

 


 Example:    093011011

The line segments, joining the mid-points of the sides of a quadrilateral, taken in order, form a parallelogram. 

Given:   

A quadrilateral ABCD, in which P is the mid-point of  , Q is the mid-point of  , R is the mid-point of  , S is the mid-point of  .

P is joined to Q, Q is joined to R. R is joined to S and S is joined to P.

 To prove:   

PQRS is a parallelogram.

 Construction:   

Join A to C.

 

EXERCISE 11.3:

Q.1 Prove that the line-segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.   093011012

Given:   

ABCD is a quadrilateral.

P, Q, R, S are the mid-points of   respectively.

P is joined to R, Q is joined to S.   intersect at point “O”


Q.2 Prove that the line-segments joining the mid-points of the opposite sides of a rectangle are the right-bisectors of each other.    093011013

 Given:   

ABCD is a rectangle.

and P, Q, R, S are the mid-points of sides  ,  , respectively. 

P is joined to R, S to Q These intersect at “O”

 To Prove:   

  and  

 Note: Diagonals of a rectangle are congruent.

Q.3 Prove that the line-segment passing through the mid-point of one side and parallel to another side of a triangle also bisects the third side. 093011014

 Given:    In ABC, D is mid-point of  which meets   at E.

 Required:     

E is mid-point of  


 

 Theorem 11.1.4:    093011015

The medians of a triangle are concurrent and their point of concurrency is the point of trisection of each median.

 Given:   

ABC

 

 To Prove:   

The medians of the ABC are concurrent and the point of concurrency is the point of trisection of each median. 



 EXERCISE 11.4:

 

Q. 1 The distances of the point of concurrency of the medians of a triangle from its vertices are respectively 1.2cm; 1.4 cm and 1.5 cm. Find the lengths of its medians. 093011016

 

 Given:    Let ABC be a triangle with center of gravity at G where  ,  , 

 Required: To find the length of  ,  







 

Q. 2 Prove that the point of concurrency of the medians of a triangle and the triangle which is made by joining the mid-points of its sides is the same. 093011017

 Given:   

In ABC,   are its medians that are concurrent at point G.

  is formed by joining mid-points of  

 To Prove:   

Point G is point of concurrency  of triangle PQR. 

 

 


Theorem 11.1.5:    093011018

If three or more parallel lines make congruent segments on a transversal, they also intercept congruent segments on any other line that cuts them.

 Given:     

The transversal   intersects   at the

 points M, N and P respectively, such that  . 

The transversal   intersects them at points R, S 

and T respectively.

 To Prove:   

 

 

 Corollaries:   (i) A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side. 093011019

 Given:    In ABC, D is the mid-point of  .   which cuts   at E.

 To prove:     

 

 Exercise 11.5:

 

Q. 1 In the given figure.  and  if m =1cm then find the length of   and  093011020

Given:   In given figure ,

  ,  

Required::   To find  

 

Q. 2 Take a line segment of length 5cm and divide it into five congruent parts. 093011021

[Hint: Draw an acute angle BAX. On   take           .

Joint T to B. Draw line parallel to   from the points P, Q, R and S.]


 

 

Review Exercise 11    OBJECTIVE

Choose the correct answer.  

 

194. In a parallelogram opposite sides are…

(Board 2014)               093011022

(a) different (b) perpendicular 

(c) congruent (d) intersecting

195. In a parallelogram opposite angles are ……………. : 093011023

(a) parallel (b) congruent 

(c) complementary (d) adjacent

196. Diagonals of a parallelogram …….. each other at a point. 093011024

(a) perpendicular to (b) intersect

(c) equal to   (d) parallel to

197. Medians of triangle are………. 093011025

(a) equal (Board 2015)

(b) concurrent  

(c) congruent

(d) parallel 

198. Diagonal of a parallelogram divides the parallelogram into ……. triangles. 

(Board 2013)093011026

(a) two equal (b) two different 

(c) three different (d) three equal 

199. In a parallelogram shown in fig.                yo = ……    093011027

(a) 115o           (b) 90o

(c) 75o           (d) 105o

200. In a parallelogram shown in fig.              xo = ……  093011028

 (a) 115o (b) 90o

(c) 75o (d) 105o

201. In a parallelogram shown in fig. xo…………     093011029

 (a) 55o (b) 5o

(c) 44o (d) 125o


202. In a parallelogram shown in fig. m=………   093011030

 (a) 8 (b) 10

(c) 2 (d) 4

203. In  ABC   E and D are midpoints of the sides   and   respectively. Find the value of m .   093011031

 (a) 6cm      (b) 9cm 

(c) 18cm    (d) 10cm

204. In parallelogram congruent parts are: 

(Board 2015) 093011032

 (a) Opposite sides     

(b)  Diagonals  

(c) Opposite angles   

(d) Opposite sides and angles

205. Alternate angles on parallel lines intersected by a transversal are_____. 093011033

 (a) Congruent     

(b)  Non-congruent  

(c) Complementary   

(d) Supplementary

206. Corresponding angles on parallel lines intersected by a transversal are ____. 093011034

(a) Congruent     

(b)  Non-congruent  

(c) Complementary   

(d)  Supplementary

207. If two lines intersect each other, then vertical angles so formed are ______. 093011035

(a) Congruent     

(b)  Non-congruent  

(c) Complementary   

      (d)  Supplementary

208. Diagonals of a rectangle are ____. 093011036

(a) Congruent     

(b)  Non-congruent  

(c) Unequal 

      (d)  Parallel

209. Which of the following is true for a parallelogram ABCD? 093011037

(a)       (b)   

(c) (d)   

210. Symbolically two parallel lines AB and PQ written as: 093011038

(a)     (b)   

(c)   (d)   

211. The point of concurrency of median is the point of _____ of each median. 093011039

(a) bisection    (b)  trisection

(c) centre (d)   end



 


Q.1. Fill in the blanks.  

 

 (i) In a parallelogram opposite sides are…..  093011040

(ii) In a parallelogram opposite angles are ……. 093011041

(iii) Diagonals of a parallelogram ….. each other at a point.  093011042

(iv) Medians of a triangle are …………. 093011043

(v) Diagonal of a parallelogram divides the parallelogram into two ……….. triangles.  093011044

2. In parallelogram ABCD 093011045

(i)       093011046

(ii)     093011047

(iii) m1    m3 093011048

(iv) m2    m4 093011049


 


Q. 3 Find the unknowns in the given figure.     093011050

Given: Let ABCD be the given figure with    

 

To Find:  The values of mo, no, xo and yo

 


 


 

Q.4 If the given figure ABCD is a parallelogram, then find x, m. 093011051

Given: ABCD is a parallelogram with angles as shown in figure. 

To Find: The value of xo and mo

 


 

 Q. 5 The given figure LMNP is a parallelogram. 

Find the value of m, n. 093011052

Given:   The parallelogram LMNP with lengths and angles as shown in figure.

To find: The values of mo and no 


Q.6 In the question 5, sum of the opposite angles of the parallelogram is 110o, find the remaining angles. 093011053

Given:   LMNP is a parallelogram with angles 55o, 55o as shown 

To Find: All angles 

 


44.


UNIT 12 





a.

 

Q.  Define Right Bisector of a Line Segment. 093012001


Q.  Define Angle Bisector. (Board 2014) 093012002


 Theorem: 12.1.1: 093012003

Any point on the right bisector of a line segment is equidistant from its end points.

 Given::

A line LM intersects the line segment AB at the point C such that  and P is a point on  

 To Prove::  

 


 Theorem 12.1.2: (Board 2014) 093012004

Any point equidistant from the end points of a line segment is on the right bisector of it.

 Given: is a line segment. Point P is such that .

 To Prove: The Point P is on the right bisector of .

 Construction:: Joint P to C, the midpoint of  

 


 Exercise 12.1:

 

Q. 1 Prove that the centre of a circle is on the right bisectors of each of its chords.    093012005

Given: Circle with centre O. Draw any chord  .

 To Prove:Centre of the circle is on right bisectors of each of its chords

Construction:Draw  Join O with A and B.

 


 

Q. 2 Where will be the centre of a circle passing through three non-collinear points and why? (Board 2014) 093012006

Q. 3 Three villages P, Q and P are not on the same line. The people of these villages want to make a Children Park at such a place which is equidistant from these three villages. After fixing the place of children Park, prove that the Park is equidistant from the three villages.

093012007

Given: Three villages P, Q, and R not on the same line and a park O

To Prove:

A place for park O is equidistant from villages P,Q and R. 


Theorem 12.1.3: (Board 2013, 15)  093012008 

The right bisectors of the sides of a triangle are concurrent. 

Given: ABC

 To Prove:

The right bisectors of  and   are concurrent. 

 

 Theorem 12.1.4 (Board 2013) 093012009

Any point on the bisector of an angle is equidistant from its arms.

 Given:

A point P is on , the bisectors of AOB.

 To Prove

 i.e., P is equidistant from  and  

 

 

Theorem 12.1.5: Any point inside an angle, equidistant from its arms, is on the bisector of it. (Board 2015) 093012010

 Given: Any point P lies inside AOB such that   where  and  

 To Prove: Point P is on the bisector of AOB.

 Construction: Join P to O.

 


Exercise 12.2:

Q.1 In a quadrilateral ABCD,  and the right bisectors of   meet each other at point N. prove that   is a bisector of ABC. 093012011

Given: Quadrilateral ABCD in which  . Right bisectors of   meet each other at point N.

 To prove: is a bisector of ABC


Q.2 The bisectors of A, B and C of a quadrilateral ABCP meet each other at point O. Prove that the bisectors of P will also pass through the point O. 093012012

Given:Bisector of the angles A, B, C meet at O.

 To Prove:

Bisector of P will also pass through O.

 

 

 Theorem 12.1.6: (Board 2014)   093012013

The bisectors of the angles of a triangle are concurrent.

 Given: ABC

 To Prove:

The bisectors of A, B and C are concurrent.

 Construction:

Draw the bisectors of B and C which intersect at point I. From I, draw  ,  and .




 


 

Exercise 12.3:

 

Q.1 Prove that the bisector of the angles of base of an isosceles triangle intersect each other on its altitude. 093012014

Given:An isosceles  ABC and  A and B are its base angles.  and  intersecting at O are angle bisectors of  A and  B respectively .

To prove: point O is on the altitude of  ABC  

Construction:Draw perpendicular (altitude)   from the vertex C to the base  

 

 

Q.2 Prove that the bisector of two exterior and third interior angles of a triangle are concurrent: 093012015

Given:A   ABC,  angle bisector of its interior  A, 

 and are angle bisectors of its two exterior angles 

 B and  C respectively which intersect each other at point I. 

To prove: and are concurrent

Construction: Draw perpendiculars  and   from point I to the produced side  and   respectively 

 

 


45. Review Exercise 12    OBJECTIVE

Choose the correct answers

 

212. Bisection means to divide into ___  equal parts 093012016

(a) Two (b) Three

(c) Four (d) Five

213. __ of line segment means to draw perpendicular which passes through the midpoint of line segment.093012017

(a) Right bisection 

(b) Bisection

(c) Congruent

(d) Mid-point

214. Any point on the _____ of a line segment is equidistant from its end points: 093012018

(a) Right bisector    (b)  Median

(b) Angle bisector    (d)  Altitude

215. Any point equidistant from the end points of line segment is on the ____ of it: 093012019

(a) Right bisector  (b) Median

(b) Angle bisector (d) Altitude

216. The bisectors of the angles of a triangle are: (Board 2015) 093012020

(a) Concurrent     (b) Congruent

(c) Parallel     (d) None

217. Bisection of an angle means to draw a ray to divide the given angle into ___ equal parts: 093012021

(a) Four (b) Three

(c) Two (d) Five

218. If  is right bisector of line segment  then:    (i) 093012022

(a)  (b) 

(c)  (d)  

 

219. If   is right bisector  of line segment , then  =____ 093012023

(a)  (b) 

(c)  (d)  

220. The right bisectors of the sides of an acute triangle intersects each other ___ the triangle. 093012024

(a) Inside (b) Outside

(c) Midpoint (d) None 

221. The right bisectors of the sides of a right triangle intersect each other on the ___ 093012025

(a) Vertex (b) Midpoint

(c) Hypotenuse (d) None

222. The right bisectors of the sides of an obtuse triangle intersect each other ___ the triangle. 093012026

(a) Outside (b) Inside

(c) Midpoint (d) None

223. The point of line segment through which the right bisector passes is called its _____ point. 093012027

(a) end (b) mid

(c) non-collinear (d) trisection

224. The ______ of a circle is on the right bisectors of each of its chords. 093012028

(a) radius (b) centre

(c) diameter (d) area

225. The point of intersection of right bisectors of sides of a triangle is equidistant from the ____ of triangle.

(a) sides (b) vertices   093012029

(c) centre (d) angles

226. The point of intersection of right bisectors of sides of a triangle is equidistant from the _______ of triangle. 093012030

(a) one vertex (b) two vertices

(c) three vertices (d) central point

227. The altitudes of a triangle are _____.

093012031

(a) congruent (b) concurrent

(c) equal (d) parallel

228. The bisectors of two exterior angles and third interior angle of a triangle are __________. 093012032

(a) congruent (b) concurrent

(c) perpendicular (d) parallel

229. The bisectors of the base angles of an isosceles triangle intersect each other on its ______. 093012033

(a) base (b) vertex

(c) altitude (d)vertical angle







 

 

Q.1   Which of the following are true and which are false?

(i) Bisection means to divide into two equal parts. 093012034

(ii) Right bisection of line segment means to draw perpendicular which passes 

through the mid-point of line segment 093012035

(iii) Any point on the right bisector of a line segment is not equidistant from its 

end points. 093012036

(iv) Any point equidistant from the end points of a line segment is on the right 

bisector of it. 093012037

(v) The right bisectors of the sides of a triangle are not concurrent. 093012038

(vi) The bisectors of the angles of a triangle are concurrent. 093012039

(vii) Any point on the bisector of an angle is not equidistant from its arms 093012040

(viii) Any point inside an angle, equidistant from its arms, is on the bisector of it.

093012041

Q.2 If  is right bisector of line segment  , then: 093012042

Q.3 Define the following 093012043

(i) Bisector of a line segment

(ii) Bisector of an angle


Q.4 The given triangle ABC is equilateral triangle and  is bisector of angle A , then find the values of unknowns xo, yo and zo. (Board 2013) 093012044

Q. 5In the given congruent triangles LMO and LNO find the unknown x and m. 093012045

 is right bisector of the line segment . 093012046

(i) If   then find the  and  093012047

(ii) If  , then find  . 093012048

Given: CD is a right bisector on the line segment AB.

To find(i)  

(ii)  


 

UNIT 13 




a.

 

Theorem 13.1.1: If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it. 093013001

 Given: In ABC,  

 To Prove: mABC > mACB

Construction:On  take a point D such that   Join B to D so that ADB is an isosceles triangle. Label 1 and 2 as shown in the given figure.

 

 Example 1: Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60o. (i.e., two-third of a right-angle). 093013002

 Given:InABC,  > ,  > .

 To Prove:

mB > 60o.

 


 Example 2: In a quadrilateral ABCD,  is the longest side and  is the shortest side. Prove that mBCD > mBAD. 093013003

Given: In quad. ABCD,  is the longest side and  is the shortest side.

 To Prove: mBCD > mBAD


 

Theorem: 13.1.2: (Converse of theorem 13.1.1)  093013004

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

 Given: In ABC, mA > mB

 

Example: 093013005

ABC is an isosceles triangle with base  . On   a point D is taken away from C. A line segment though D cuts   at L and  at M. Prove that  .

 Given:

In ABC,  .

D is a point on   away from C.

A line segment through D cuts   and L and   at M.

 

 Theorem: 13.1.3: 093013006

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

 


Given:

ABC


 To Prove:

(i)   

(iii)  

 Construction:

Take a point D on   such that  . Join B to D and name the angles. 1, 2 as shown in the given figure.


 

 

 Example 1: 093013007

Which of the following sets of lengths can be the lengths of the sides of a triangle.

(a) 2cm, 3cm, 5cm

(b) 3cm, 4cm, 5 cm

(c) 2cm, 4cm, 7cm

Example 2:Prove that the sum of the measures of two sides of a triangle is greater than twice the measure of the median which bisects the third side. 093013008

 Given:

In ABC,

median AD bisects side   at D.

 To Prove:

 

 

 Example 3: 093013009

Prove that the difference of measures of two sides of a triangle is less than the measure of the third side.

 Given:ABC

 To Prove:

 

 

Exercise 13.1:

Q. 1 Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side?

(a) 5 cm 093013010 (b) 20 cm 093013011

(c) 25 cm 093013012 (d) 30 cm 093013013

Ans. 20cm.

Q. 2 O is an interior point of the ABC. Show that 

  093013014

Given:  O is the interior point of ABC 

To Prove::

 

 

Q. 3 In the ABC, mB = 70o and mC = 45o. Which of the sides of the triangle is longest and which is the shortest? 093013015


 

Q. 4 Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides. 093013016

Given:A right angled triangle ABC and  its hypotenuse .


 

Q. 5 In the triangular figure,  and  are the bisectors of B and C respectively. Prove that  093013017

Given: m ,  and   are the bisectors of the angles B and C 




To Prove::

 

 



 

Theorem: 13.1.4:From a point, outside a line, perpendicular is the shortest distance from the point to the line. 093013018

 Given: A line AB and a point C (not lying on ) and a point D on  such that   

 To Prove:

is the shortest distance from the point C to .

 Construction:

Take a point E on . Join C and E to form a CDE

 

  

Exercise 13.2:

 

Q. 1 In the figure, P is any point and AB is a line. Which of the following is the shortest distance between the point P and the line AB. 093013019

 

(a) (b)   

(c) (d)   

Q. 2 In the figure, P is any point lying away from the line AB. Then   will be the shortest distance if: 093013020

(a) mPLA = 80o 093013021

(b) mPLB = 100o 093013022

(c) mPLA = 90o 093013023


Q. 3 In the figure,   is perpendicular to the line AB and  > . Prove that  . 093013024

 

Proof::

Here  

As   is the shortest distance from P to line AB. So  

As we go away from point L, the distance from points to L increases Hence  

 

46. Review Exercise 13    OBJECTIVE

Choose the correct answer:

 

230. Which of the following sets of lengths can be the lengths of the sides of a triangle: 093013025

(a) 2cm, 3cm, 5cm

(b) 3cm, 4cm, 5cm

(c) 2cm, 4cm, 7cm

(d) 1cm, 2cm, 3cm

231. Two sides of a triangle measure 10cm and 15cm. Which of the following measure is possible for the third side! 093013026

(a) 5cm (b) 20cm

(c) 25cm (d) 30cm

232. In the figure, P is any point and AB is a line. Which of the following is the short distance between the point P and line AB. 093013027

(a) (b)  

(c) (d)  

233. In the figure, P is any point lying away from the line AB. Then   will be shortest distance if: 093013028

 

(a) m< PLA = 80o

(b) m < PLB = 100o

(c) m < PLA = 90o

(d) None

234. The angle opposite to the longer side is: 093013029

(a) Greater (b) Shorter

(c) Equal (d) None

235. In right angle triangle greater angle of: 093013030

(a) 60o (b) 30o

(c) 75o (d) 90o

236. In an isosceles right-angled triangle angles other than right angle are each of: 093013031

(a) 40o (b) 45o

(c) 50o (d) 55o

237. A triangle having two congruent sides is called ___ triangle. 093013032

(a) Equilateral

(b) Isosceles

(c) Right

(d) None

238. Perpendicular to line form an angle of __ 093013033

(a) 30o (b) 60o

(c) 90o (d) 120o

239. Sum of two sides of triangle is ___ than the third. 093013034

(a) Greater (b) Smaller

(c) Equal (d) None

240. The distance between a line and a point on it is ___ 093013035

(a) Zero (b) One

(c) Equal (d) None 

241. The difference of two sides of a triangle is ___ the third side.093013036

(a) greater than (b) smaller than 

(c) equal to (d) congruent to

242. In a triangle, the side opposite to greater angle is_____. 093013037

(a) smaller (b) greater

(c) equal (d) congruent

243. In a triangle the angles opposite to congruent sides are ____. 093013038

(a) congruent (b) concurrent  

(c) unequal (d)non-congruent 

244. In a triangle, the side opposite to smaller angle is ____. 093013039

(a) smaller (b) greater

(c) congruent (d) concurrent

245. An exterior angle of a triangle is ___ non-adjacent interior angle.093013040

(a) equal to (b) smaller than

(c) greater than (d) congruent to

246. For a  , which of the following is true? 093013041

(a) 

(b) 

(c) 

(d)  

247. For a  , which of the following is true? 093013042

(a) 

(b) 

(c) 

(d)  

248. What is the supplement of a right angle? 093013043

(a)  (b)   

(c)    (d)   

249. The sum of the measures of two sides of a triangle is greater than_____ the measure of the median which bisects the third side. 093013044

(a)  twice (b)  thrice

(c)  hypotenuse (d)  angles

250. In an obtuse angled triangle, the side opposite to the obtuse angle is ____ than each of the other two sides.

093013045

(a)  smaller (b)  longer

(c)  twice (d)  thrice

 


 


 

Q. 1 Which of the following are true and which are false?

 

(i) The angle opposite to the longer side is greater. 093013046

(ii) In a right-angled triangle greater angle is of 60o. 093013047

(iii) In an isosceles right-angled triangle, angles other than right angle are each of 45o.

093013048

(iv) A triangle having two congruent sides is called equilateral triangle.  

(Board 2015)093013049

(v) A perpendicular from a point to the line is shortest distance. 093013050

(vi) Perpendicular to line form an angle of 90o. 093013051

(vii) A point out-side the line is collinear. 093013052

(viii) Sum of two sides of triangle is greater than the third. 093013053

(ix) The distance between a line and a point on it is zero. 093013054

(x) Triangle can be formed of lengths 2 cm, 3 cm and 5 cm. 093013055

Q.2 What will be angle for shortest distance from an outside point to the line? 093013056

Q.3 If 13 cm, 12 cm, and 5 cm are the lengths of a triangle, then verify that difference of measures of any two sides of a triangle is less than the measure of the third side. 093013057

Q.4 If 10 cm,6 cm and 8 cm are the lengths of a triangle, then verify that sum of measures of two sides of a triangle is greater than the third side. 093013058

Q.5  3 cm, 4 cm and 7cm are not the lengths of the triangle. Give the reason. 093013059

Q. 6 If 3 cm and 4 cm are lengths of two sides of a right angle triangle then what should be the third length of the triangle. 093013060

Q7.  3 cm,6cm and 9 cm are not lengths of triangle. Why? (Board 2015) 093013061

Q8.  Define acute angled triangle.(Board 2015)

093013062

Q8.  Define obtuse angled triangle. 093013063

Q9.  Which side is longer in a triangle?

093013064

Q10. Which side is longer in right  triangle?

093013065

Q11. Which side is longer in obtuse angled  triangle? 093013066

Q12. What is the distance between a line and a point not on it? 093013067

Q13. What is the distance between a line and a point on it? 093013068


 

 

47.


UNIT 14 



a.

 

 

Theorem: 14.1.1  

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally. 093014001


Given 

In   the line   is intersecting the sides   and   at points E and D respectively such that  .  


To Prove

 



Theorem 14.1.2                                       093014002

(Converse of Theorem)

If a line segment intersects the two sides of a triangle in the same ratio then it is parallel to the third side.

Given In     intersects   and   such that  

To Prove  

Construction  If  , then draw   to meet  produced at F.

 

 

 

Exercise 14.1 


 

Q. 1  In  093014003

 

i)   cm, cm,

     cm  then find  .    093014004

ii) If  cm,  cm, 

     cm, find  093014005

iii) If , cm, find   093014006

iv) If  cm,  cm, (L.B.2014)

              cm,  cm, find 

            093014007

v)  If    093014008

      , and   find the value of  093014009

Q. 2  If   is an isosceles triangle,   is vertex angle and   intersects the sides   and   as shown in the figure so that.    093014010

Prove that   is also an isosceles triangle.

Given: An isosceles triangle ABC in which   and  A is its vertical angle 

To Prove: 

 ADE is an isosceles triangle.


 

Q. 3   In an equilateral triangle ABC shown in the figure.    093014011

 

Find all three angles of   and name it also.

Given:   is an equilateral triangle.

 

 

To Prove:      is isosceles triangle.

 

Q. 4 Prove that the line segment drawn through the mid-point of 

one side of a triangle and parallel to another side bisects the third side.         

Given in   is such that  and                       093014012

 

To Prove:  

 

Q. 5    Prove that the line segment joining the mid-points of any two sides of a triangle is parallel to the third side. 093014013

Given: In  , points D, E are such that  

   and   

To Prove:  

Construction: Let   and take a point k on produced    

such that  .

 


Theorem: 14.1.3 

The internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the lengths of the sides containing the angle.      093014014

Given: In   internal angle bisector of 

  meets    at  the  point D. 

To Prove:   

 Construction:

Draw a line segment   to meet   produced at E.

 

 

Theorem: 14.1.4 If two triangles are similar, then the measures of their corresponding sides are proportional. 093014015


Given:   

i.e.,   and  

To Prove:

 

Construction:

(i) Suppose that  (ii)  

On   take a point L such that  

On  take a point M such that  . Join L and M by the line segment LM.

 

 

a. Exercise 14.2


 

Q. 1    In   as shown in the figure,   bisects   and meets   at D,   is equal to

(a)  5    093014016 (b)  16    093014017

(c)  10 093014018 (d)  18 093014019

Q. 2 In   as shown in the figure,   bisects  . If     and   then find   and  . 

093014020

 

Q. 3 Show that in any correspondence of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangles are similar. 093014021

 

Given:  In  

  and   

To Prove:  


 

Q. 4 If line segments  and are  intersecting at point X and   then show that   and   are similar. 093014022

Given:

  intersect each other at point x and  

To Prove: 

 

 

 


48. Review Exercise 14    OBJECTIVE

Choose the correct answers

 

 

251. In ABC as shown in figure,  bisects C and meets   at D, m  is equal to:   093014023

(a) 5

(b) 16

(c) 10

(d) 18

252. In ABC shown in figure,   bisects C, if  ,  and  then   =      093014024

 

(a) (b)  

(c) (d)  

253. In ABC shown in figure,   bisects 

C, if  ,  and  then  093014025






(a) (b)  

(c) (d)  

254. One and only one line can be drawn through ___ points. 093014026

(a) Two (b) Three

(c) Four (d) Five

255. The ratio between two alike quantities is defined as: 093014027

(a) a : b (b) b - a

(c) a : b = c : d (d) a + b

256. If a line segment intersects the two sides of a triangle in the same ratio then it is parallel to the __ side.

(a) Third    (b) Fourth   093014028

(c) Second   (d) None

257. Two triangles are said to be similar if these are equiangular and their corresponding sides are 093014029

(a) Proportional   (b) congruent

(c) concurrent      (d) None     

258. In LMN shown in the figure   if   = 5cm,  ,  then  : 093014030

(a) 4.6cm (b) 4.5cm

(c) 3.5cm (d) 4.0

 

9. A line segment has ________mid-point 

(a) only one (b) only two 093014031

(c) only three (d) infinite 

10. Ratio has no      (Board 2014)  093014032

(a) value (b) symbol 

(c) unit (d) importance 

11. Statement of equality of two ratios is called ……. 093014033

(a) double ratio (b) simple ratios 

(c) proportion (d) Relation

12. The symbol used for similarity is……

(a) = (b)  093014034

(c) (d)  

13. The symbol used for congruency is …..

(a) = (b)  093014035

(c) (d)  

14. The symbol used for ratio is ……. 

(a) (b)  093014036

(c) ~ (d) :

15. The ratio between two alike quantities has no…… 093014037

(a) value (b) symbol 

(c) unit (d) importance

16. The symbol used for line AB is …… 

(a) AB (b)  093014038

(c) (d)  

17. The symbol used for ray AB is …….

(a) AB (b)  093014039

(c) (d)  

18. The symbol used for line segment AB is ……. 093014040

(a) AB (b)  

(c) (d)  

19. stands for …….. 093014041

(a) line AB (b) Ray AB

(c) line segment AB (d) points AB

20.   stands for …….. 093014042

(a) line AB (b) Ray AB

(c) line segment AB (d) points AB

21. stands for …….. 093014043

(a) line AB (b) Ray AB

(c) line segment AB (d) points AB

22. The symbol used for parallel is ……. 

(a) = (b) || 093014044

(c) (d)  

23. The symbol used for perpendicular is… 

(a) = (b) || 093014045

(c) (d)  

24. Which of the following show that   and   are parallel? 093014046

(a) (b)  

(c) (d)  

25. Which of the following show that   and   are perpendicular? 093014047

(a) (b)  

(c) (d)  

26. Two congruent triangles ABC and DEF are symbolically written as……. 093014048

(a)

(b)  

(c)      

(d)  

27. Two similar triangles ABC and DEF are symbolically written as …… 093014049

(a)    

(b)  

(c)  

(d)  

28. Correspondence between two triangles ABC and DEF are symbolically written as…….. 093014050

(a)

(b)  

(c)  

(d)  

29. Symbol used for proportion is….

(a) (b)  093014051

(c) ~ (d) :

30. Proportion is a equality of …… ratios. 

(a) Two (b) Three 093014052

(c) Four                (d) Five  (Board 2013)

31. Similar triangles are of the same shape but  …… in sizes. (Board 2015) 093014053

(a) The same (b) Different

(c) Both (a) and (b)     

(d) None of these

32.   is the symbol of: (Board 2015) 093014054

(a) equal (b) parallel

(c) perpendicular (d) congruent

33. Development of prints of different sizes from the same negative of a photograph is an example of _______. 093014055

(a) Congruency (b) Similarity

(c) Geometry (d) Equality

34. In a ratio elements must be expressed in ______ units. 093014056

(a) Different (b) Similar

(c) Same (d) New

35. At least how many points determine a line? 093014057

(a) one (b) two

(c) three (d) four



36. At least how many non-collinear points determine a plane? 093014058

(a) one (b) two

(c) three (d) four

37. If two intersecting lines form equal adjacent angles, the lines are ___. 093014059

(a) parallel   (b) perpendicular

(c) non-congruent  (d) collinear

38. The line segment obtained by joining the midpoints of any two sides of a triangle is ______ third side. 093014060

(a) parallel to (b) perpendicular to

(c) equal to (d) greater than

39. Congruent Triangles are also: 093014061

(a) similar

(b) different shapes

(c) with different angles

(d) none

40. Triangles are of same size and shape:

(a) similar (b)  congruent 093014062

(c) scalene (d) none






 

 

Q. 1 Which of the following are true and which are false?

i. Congruent triangles are of same size and shape. 093014063

ii. Similar triangles are of same shape but different sizes. 093014064

iii. Symbol used for congruent is ‘ ’. 093014065

iv. Symbol used for similarity is ‘~’. 093014066

v. Congruent triangles are similar. 093014067

vi. Similar triangles are congruent. 093014068

vii. A line segment has only one mid-point. 093014069

viii. One and only one line can be drawn through two points.             093014070

ix. Proportion is non-equality of two ratios. 093014071

x. Ratio has no unit. 093014072

 

Q. 2 093014073

(i) Define Ratio.

 (ii) Define Proportion.  (Board 2014, 15)

 (iii)Define Congruency of Triangles. 

 (iv) Define Similar Triangles. 

Q. Write to practical applications of similar triangles in daily life. 093014074

Q. How many midpoint a line segment has? 093014075

Q. How many lines can be drawn through two points? 093014076

Q. Why does ratio has no unit? 093014077

Q. 3 In   show in the figure,  .

i) If  5cm,   2.5cm,   2.3cm, then find  .

093014078

(ii) If  6cm,  ,  5cm, then find  

Given:  In   093014079

 

To Find:     = ?

 


 

___________________________________________________________________________________________________________________________________________

(ii) 

 

Given:  

 

To Find:  

Q.4 In the shown figure, let  ,    093014080

   . Find the value of   if  .

 

If  ||   then   

Q.5 In  LMN shown in the figure   bisects  . If    , then find   and  .

(Board 2015) 093014081

 

Given: 

     In  is angle bisector of  

 

To Find:  

 

_________________________________________________________________________________

Q.6 In Isosceles  shown in the figure, find the value of   and . 093014082


 Given: 

In   and  .

To Find: x = ? y = ?

49.


UNIT 15



a.

 

Pythagoras Theorem 15.1.1: 093015001

In a right angled triangle, the square of the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

 Given:ACB is a right angled triangle in which m C = 90o and =a,  = b and  = c.

 To Prove:  

Construction:

Draw perpendicular from C on  .

Let   = h,  = x and   = y. Line segment CD 

splits ABC into two s ADC and BDC.

 

 Corollary:

In a right angled ABC, right angled at A.

(i)  

(ii)  

Converse of Pythagoras’ Theorem:

Q.  What is meant by Converse of Pythagoras’ Theorem? (Board 2015) 093015002

 

 Given:

In a ABC,  and  = b such that a2 + b2 = c2.

 To Prove:

ACB is a right angled triangle.

 Construction:

Draw   perpendicular to   such that   . Join the points B and D.

 


 Exercise 15:

 

Q.1 Verify that the s having the following measures of sides are right-angled.

(i) a = 5 cm, b = 12 cm, c = 13 cm 093015003

(ii) a = 1.5 cm, b = 2 cm, c = 2.5 cm 093015004

 (iii) a = 9 cm, b = 12 cm, c = 15 cm 093015005

(iv) a = 16 cm, b = 30 cm, c = 34 cm   093015006

Q.2 Verify that a2 + b2, a2 b2 and 2ab are the measures of the sides of a right angled triangle where a and b are any two real numbers (a > b). 093015007

Q.3 The three sides of a triangle are of measure 8, x and 17 respectively. For what value of x will it become base of a right angled triangle? (Board 2014) 093015008

Q.4 In an isosceles , the base  = 28 cm, and  = 093015009

If    , then find:

(i) Length of  093015010

(ii) Area of ABC 093015011

Given




Q.5 In a quadrilateral ABCD, the diagonals   and   are perpendicular to each other. Prove that:    093015012

Given: Quadrilateral ABCD diagonal  and   

are perpendicular to each other.

To Prove: 2+  2 =  2+ 2

 


 

Q.6 (i) In the ABC as shown in the figure, mACB = 90o and   . Find the lengths a, h and b if   = 5 units and  units. 093015013

Given:  A  ABC as shown in figure ,m   ACB = 900and  

To Find The value of a, h and b. 

 

 (ii)Find the value of x in the shown figure. 093015014

Q.7 A plane is at a height of 300 m and is 500 m away from the airport as shown in the figure. How much distance will it travel to land at the airport?

  093015015

Q.8 A ladder 17 m long rests against a vertical wall. The foot of the ladder is 8m away from the base of the wall. How high up the wall will the ladder reach? 093015016

Q.9 A student travels to his school by the route as shown in the figure. Find  the direct distance from his house to school. 093015017


 

__________________________________________________________________________

Review Exercise 15    OBJECTIVE

Choose the correct answer:

 

259. In a right angled triangle, the square of the length of hypotenuse is equal to the ____ of the squares of the lengths of the other two sides. 093015018

(a) Sum (b) Difference

(c) Zero (d) None of these

260. If the square of one side of a triangle is equal to the sum of the squares of the other two sides then the triangle is a ____ triangle. 093015019

(a) Right angled (b) Acute angled

(c) Obtuse angled

(d) None of these

261. Let c be the longest of the sides a, b and c of a triangle. If a2 +b2 = c2, then the triangle is ___: 093015020

(a) Right (b) Acute

(c) Obtuse (d) None of these

262. Let c be the longest of the sides a, b and c of a triangle. If a2 + b2> c2 then triangle is: 093015021

(a) Acute (b) Right

(c) Obtuse (d) None of these

263. Let c be the longest of the sides a, b and c of a triangle. If a2+b2< c2, then the triangle is: 093015022

(a) Acute (b) Right

(c) Obtuse (d) None of these

264. If 3cm and 4cm are two sides of a right angled triangle, then hypotenuse is; 093015023

(a) 5cm (b) 3cm

(c) 4cm (d) 2cm

265. In right triangle ____ is a side opposite to right angle. 093015024

(a) Base (b) Perpendicular

(c) Hypotenuse (d) None

266. In the fig. 093015025

 

(a) x = 6cm (b) x = 8cm

(c) x = 10cm (d) x = 16cm



267. In the fig. 093015026

 

(a) x = 5cm (b) x = 8cm 

(c) x = 12cm (d) x = 18cm


268. In the fig. 093015027

 

(a) x = 2cm (b) x = 1cm

(c) (d) x = 3cm

269. In right angled triangle greater angle is ________. 093015028

(a) (b)  

(c) (d)  

270. In right angled triangle on angle is   and other two angles are_____.093015029

(a) obtuse (b) acute

(c) right (d) supplementary

271. If hypotenuse of an isosceles right angled triangle is   then each of other side is: 093015030

(a) 1cm (b) 2cm

(c) 3cm (d) 4cm

272. In right angled triangle which side is the longest side? 093015031

(a) perpendicular

(b) base

(c) hypotenuse

(d) none of these

273. In right angled triangle if  then which of the following is true?

093015032

(a) (b)  

(c) (d)  

274. In a Isosceles right angled triangle two acute angles are equal to: 093015033

(a) 30o (b) 45o

(c) 60 o (d) 90o

 

 

Q.1 Which of the following are true and which are false?

(i) In a right angled triangle greater angle is 90o. 093015034

(ii) In a right angled triangle right angle is 60o. 093015035

(iii) In a right triangle hypotenuse is a side opposite to right angle. 093015036

(iv) If a, b, c are sides of right angled triangle with c as longer side then c2 = a2 + b2. 093015037

(v) If 3 cm and 4 cm are two sides of a right angled triangle, then hypotenuse is 5 cm. 093015038

(vi) If hypotenuse of an isosceles right triangle is  cm then each of other side 

is of length 2 cm. 093015039

 

Q. 2 Find the unknown value in each of the following figures.


 

  (Board 2014) 093015040

 

  093015041





(iii)  If two sides of a triangle are 5cm and 13cm, then find perpendicular of triangle.  (Board 2015) 093015042

 

  (Board 2013, 15) 093015043

Q. If a2 + b2 = c2 what kind of triangle it is? 

093015044

Q. If a2 + b2 > c2 what kind of triangle it is? 

093015045

Q. Define hypotenuse of right angled triangle.

093015046

Q. If a2 + b2 < c2 what kind of triangle it is? 093015047

Q. Which angle is greater angle in right angled triangle? 093015048






 


UNIT 16 



b.

 

Q.  Define Area of a Figure.           093016001

Q.  Define interior of triangle.

Q.  Define Triangular Region.       093016002

Q. What is Congruent Area Axiom? 093016003

Q. Define interior of a rectangle.       093016004

Q. Define Rectangular Region.            093016005

Q. In how many triangular regions a rectangular region can be divided? 093016006

Q. What is meant by  ||gm between the same parallels?                                       093016007

Q. What is meant by the triangles  between the same parallels?                093016008

Q. What is meant by the  triangle and parallelogram  between the same parallels? 

093016009

Q.  Define Altitude of Parallelogram.

093016010

Q.  Define Altitude of the Triangle. 093016011

Q. Under what condition areas of a parallelogram and rectangle are equal? 

093016012

 

__________________________________________________________________________


Theorem  16.1.1:  Parallelograms on the same base and between the same parallel lines (or of the same altitude) are equal in area.                  093016013

 Given:  Two parallelograms ABCD and ABEF having the 

same base   and between the same parallel lines   and  .

 To Prove:

Area of parallelogram ABCD = area of parallelogram ABEF

 


Theorem 16.1.2: (Board 2013, 14) 093016014

Parallelograms on equal bases and having the same (or equal) altitude are equal in area.          

 Given:  Parallelograms ABCD, EFGH are on the equal bases ,  , having equal altitudes. 

 

 To Prove:  Area of (parallelogram ABCD) = area of (parallelogram EFGH)

 Construction:   Place the parallelograms ABCD and EFGH so that their equal bases  ,   are in the straight line BCFG. Join   and  .

 

 Exercise 16.1:


 

Q. 1 Show that the line segment joining the mid-points of opposite sides of a parallelogram, divides it into two equal parallelograms.             093016015



Given: ABCD is parallelogram. Point p is midpoint of side   i.e.  and  point Q is midpoint of side   i.e.  .

To Prove:   ||gm AQPD   ||gm QBCP

Construction:

Join P to Q and Q to C. 

 

 

Q. 2 In a parallelogram ABCD,  = 10cm. The altitudes corresponding to sides AB and AD are respectively 7 cm and 8cm. Find  . 093016016

Given: Parallelogram ABCD, m =10cm. The altitudes. Corresponding to the sides   and   arc 7cm and 8cm.

To Find: m =?

Construction: Make ||gm ABCD and show the given altitudes   = 7cm,   = 8cm.

 

 

Q. 3 If two parallelograms of equal areas have the same or equal bases, their altitudes are equal. 093016017

Given: Two parallelograms of same or equal bases and same areas. 

 

To Prove:   Their altitudes are equal.

Construction: Make the ||gm ABCD and EFGH. Draw     and     

 


 Theorem 16.1.3: Triangles on the same base and    (Board 2014)

of the same (i.e., equal) altitudes are equal in area.           093016018

 Given: s ABC, DBC on the same base   

and having equal altitudes. 

 To Prove: Area of (ABC) = area of (DBC) (Board 2013, 15)

 Construction: Draw   || to ,   || to    meeting   produced in M, N.

 


 

 Theorem 16.1.4:    Triangles on equal bases and of equal altitudes are equal in area. (Board 2014)

093016019

 Given:   s ABC, DEF on equal bases   ,   and having altitudes equal. 

 To Prove: 

Area ( ABC) = Area ( DEF)   


 Construction             

Place the s ABC and DEF so that their equal bases   and   are in the same straight line BCEF and their vertices on the same side of it. Draw BX || to CA and FY || to ED meeting AD produced in X, Y respectively

 


 

 Corollaries:

(1) Triangles on equal bases and between the same parallels are equal in area.

(2) Triangles having a common vertex and equal bases in the same straight line, are equal in area.

 Exercise 16.2:

 

Q. 1 Show that a median of a triangle divides it into two triangles 

of equal area. 093016020

Given:   In  is a median i.e.  

To Prove: Median divides the triangle into two triangles of equal area. 

i.e.  

Construction:   Draw altitude  

 

 

Q. 2 Prove that a parallelogram is divided by its diagonals into four triangles of equal area.     093016021

Given:         ||gm divided by its diagonals into four triangles    

 To Prove:    Areas of the four triangles are equal 

 Construction:  Make the ||gm ABCD with diagonals   intersecting each other at O to make four triangle,  AOB  BOC,  COD and  DOA.

 

 

Q.3 Divide a triangle into six equal triangular parts.  093016022








Review Exercise 16    OBJECTIVE

Choose the correct Answers:

 

275. The region enclosed by the bounding lines of  a closed figure is called the __ of the figure: 093016023

(a) Area (b) Circle

(c) Boundary (d) None

276. Base × altitude = 093016024

(a) Area of parallelogram

(b) Area of square

(c) Area of Rectangular

(d) Area of Triangle

277. The union of a rectangle and its interior is called: 093016025

(a) Circle region

(b) Rectangular region

(c) Triangle region   (d) None


278. If a is the side of a square, its area will be equal to… 093016026

(a) a square unit   (b) a2 square units

(c) a3 square units (d)a4 square units

279. The union of a triangle and its interior is called as: 093016027

(a) Triangular region

(b) Rectangular region

(c) Circle region   (d) None of these

280. Altitude of a triangle means perpendicular distance to base from its opposite___ 093016028

(a) Vertex (b) Side

(c) Midpoint (d) None

281. Area of given figure is……. 093016029

(a) 18cm

(b) 9cm

(c) 18cm2

(d) 9cm2

282. Area of given figure is…… 093016030

(a) 4cm

(b)   8cm2

(c) 16cm

(d) 16cm2

283. Area of given figure is…… 093016031

(a) 4cm2

(b) 12cm2

(c) 32cm

(d) 32cm2

284. Area of given figure is….. 093016026

(a) 160cm2

(b)   80cm2

(c) 80cm

(d)  160cm

285. Area of triangle is …… 093016032

(a) A =   Base  Height

(b) A = Base  Height

(c) A = L  w

(d) A = L2

286. Area of square is …… 093016033

(a) A =   Base  Height

(b) A = Base  Height

(c) A = L  w

(d) A = L2

287. Area of rectangle is …… 093016034

(a) A =   Base  Height

(b) A = Base  Height

(c) A = L  w

(d) A = L2

288. Area of parallelogram is …  093016035

(a) A =   Base  Height

(b) A = Base  Height

(c) A = L  w

(d) A = L2

289. If the length and breadth of a rectangle are ‘a’ and ‘b’ then its area will be: 093016036

(a) a + b (b)  

(c) (d) a = b

290. In most cases similar figures have _____ areas. 093016037

(a) same (b) different

(c) equal (d) congruent

291. All congruent figures have _____ areas. 093016038

(a) same (b) different

(c) zero (d) non-congruent

292. Area of a geometrical figure is always ___ real number. 093016039

(a) zero (b) positive

(c) negative (d) rational




 


 

Q.1 Which of the following are true and which are false?          

(i) Area of a figure means region enclosed by bounding lines of closed figure.  093016040

(ii) Similar figures have same area. 093016041

(iii) Congruent figures have same area. 093016042

(iv) A diagonal of a parallelogram divides it into two non-congruent triangles. 093016043

(v) Altitude of a triangle means perpendicular from vertex to the opposite side (base). 093016044      

(vi) Area of a parallelogram is equal to the product of base and height.  093016045

Q.2  Find the area of the following.

(i) 093016046   (ii) (Board 2013) 093016047

 (iii) 093016048 (iv)      093016049


Q.3  Define the following: (i) Area of figure   093016050  (ii)  Triangular region    093016051

       (iii) Rectangular region 093016052  (iv) Altitude or height of triangle  093016053


UNIT 17 



c.

 

50. Exercise 17.1


 

Q.1 Construct aABC, in which:

(i)   = 3.2cm,    (Board 2013) 093017001

51. Given

The sides   = 3.2cm,

  ofABC

 (ii)   093017002

52. Given

The sides 

  ofABC

 (iii)   ,  093017003

53. Given

The sides   and of ABC

 (iv)   , 093017004

54. Given

The sides   and  of ABC. (Board 2013, 15)

 (v) m =3.5cm,  093017005

55. Given

The sides  

m =3.5cm and  of ABC

 (vi)   093017006

56. Given

The side   and angles  of ABC


(vii)  

  093017007

57. Given  

The side  and angles , of ABC

Q.2 Construct a XYZ in which

(i)   093017008

58. Given

The sides   and of XYZ.

59.

 (ii) m =6.4cm,  

m Y = 90o 093017009

60. Given

The sides   and of XYZ.

 (iii)   093017010

61. Given

The sides  ofXYZ.

Q.3 Construct a right angled  measure of whose hypotenuse is 5cm and one side is 3.2cm. 093017011

62. Given

In right angled   hypotenuse is 5cm and one side is 3.2cm

Q.4 Construct a right angled isosceles 

triangle. Whose hypotenuse is: 093017012

i) 5.2cm long 093017013

63. Given

In right angled isosceles triangle hypotenuse is 5.2 cm. 

 (ii) 4.8 cm 093017014

64. Given

In right angled isosceles triangle hypotenuse is 4.8 cm. 

 (iii) 6.2 cm 093017015

65. Given

In right angled isosceles triangle hypotenuse is 6.2 cm. 

 (iv) 5.4 cm 093017016

66. Given

In right angled isosceles triangle hypotenuse is 5.4 cm. 

Q.5 (Ambiguous case) construct a ABC in which

(i) (Board 2014) 093017017

67. Given

In ABC ,  

 (ii)     093017018

68. Given

In ABC   

 (iii)     093017019

69. Given

   

 (a) Draw angle bisectors of a given triangle and verify their concurrency. 

70. Example 093017020

(i) Construct a ABC having given 

= 4.6 cm,  =5 cm and    = 5.1 cm. 

(ii) Draw its angle bisectors and verify that they are concurrent. 

71. Given

The side  =4.6 cm,   = 5 cm and  = 5.1 cm of a ABC.

 (b) Draw altitudes of a given triangle and verify their concurrency. 

72. Example 093017021

(i) Construct a triangle ABC in which  = 5.9 cm,  =56oand m =44o

(ii) Draw the altitudes of the triangle and verify that they are concurrent. 

i. Given 

The side  = 5.9 cm, and  =56o, 

 m =44o

 (c). Draw perpendicular bisectors of the sides of a given triangle and verify their concurrency. 

73. Example 093017022

(i) Construct a ABC having given 

 =4cm,  = 4.8cm and =3.6cm. 

(ii) Draw perpendicular bisectors of its sides and verify that they are concurrent. 

i. Given

Three sides  = 4cm,  = 4.8cm and  =3.6cm of a ABC.

 (d)Draw  medians of a given triangle and verify their concurrency.

74. Example 093017023

(i) Construct a ABC in which   = 4.8 cm,  = 3.5cm and  = 4cm. 

(ii) Draw medians of  ABC and verify that they are concurrent at a point within the triangle. By measurement show that the medians divide each other in the ratio 2:1.

75. Given

Three sides  =4.8 cm,  = 3.5cm and  = 4cm of a ABC.

 

76.

77. Exercise 17.2

 

Q.1Construct the following sABC. Draw the bisectors of their angles and verify their concurrency.

(i)   093017024

78. Given

The sides ,   and 

 (ii)  

  093017025

79. Given

The sides 

  of a ABC.


(iii)   093017026

80. Given

The sides   and  

Q.2 Construct s PQR. Draw their altitudes and show that they are concurrent.

(i)   (Board 2015) 093017027

81. Given

The sides    and  of a PQR.

 (ii)     093017028

82. Given

  and 

 (iii) 093017029

83. Given

 ,  

Q.3 Construct the following triangles ABC. Draw the perpendicular bisectors of their sides and verify their concurrency. Do they meet inside the triangle?

(i) ,    093017030

84. Given

Side  , of a ABC.

 (ii)   

m B=60o (Board 2014) 093017031

85. Given

The side   and 

 (iii)   (Board 2014) 093017032

86. Given

The sides   

Q.4 Construct following ’s XYZ.

Draw their three medians and show that they are concurrent.

(i)     (Board 2014) 093017033

87. Given

The side    

 (ii)   093017034

88. Given

The sides   and  

 (iii) , .

093017035

89. Given

The side    and  of XYZ.

Figure with Equal Areas

(i) Construct a triangle equal in area to a given quadrilateral. 093017036

Given:A quadrilateral ABCD.

 


90. Exercise 17.3 

Q.1 (i) Construct a quadrilateral ABCD, having   

 and 093017037

   (ii) On the side BC construct a equal in area to the quadrilateral ABCD.

093017038

 

91.

92. Given 

Sides of quadrilateral ABCD

 

 

 

Q.2 Construct a  equal in area to the quadrilateral PQRS, having  ,  , ,  and  . 093017039

 

93. Given

Parts of the quadrilateral PQRS are given. 

Q.3 Construct a equal in area to the quadrilateral ABCD, having  ,  ,  ,   and  .    093017040

 

94. Given

Parts of the quadrilateral ABCD are given


Q.4 Construct a right-angled triangle equal in area to a given square. 093017041

 


95. Given

Square ABCD 

Construct a rectangle equal in area to a given triangle.

Given: ABC


 


96. Exercise 17.4


 

Q.1 Construct a  with sides 4cm, 5cm and 6 cm and construct a rectangle having its area equal to that of the . Measure its diagonals. Are they equal? 

 

093017042

97. Given

4cm, 5cm, 6cm the sides of the triangle .


Q.2Transform an isosceles  into a rectangle. 093017043

 

Q.3 Construct a ABC such that  , , . Construct a rectangle equal in area to the ABC, and measure its sides.  093017044

 

98. Given

Three sides of the ABC

 (iii) Construct a square equal in area to a given rectangle. 

Given: A rectangle ABCD


 

99. Exercise 17.5

 


 

Q.1 Construct a rectangle whose adjacent sides are 2.5 cm and 5cm respectively.  Construct a square having area equal to the given rectangle. 093017045

 

Q.2 Construct a square equal in area to a rectangle whose adjacent sides are 4.5 cm and 2.2 cm respectively. Measure the sides of the square and find its area and compare with the area of the rectangle. 093017046

 

Q.3 In Q.2 above verify by measurement that the perimeter of the square is less than that of the rectangle. 

100. 093017047

Q.4 Construct a square equal in area to the sum of two squares having sides 3cm and 4 cm respectively. 093017048

 

101.

Q.5 Construct a  having base 3.5 cm and other two sides equal to 3.4 cm and 3.8 cm respectively. Transform it into a square of equal area. 093017049

 

.

 

Q. 6 Construct ahaving base 5 cm and other sides equal to 5 cm and 6 cm. Construct a square equal in area to given. 093017050

Let

     

 



REVIEW EXCERSIE 17

Q.1 Fill in the blanks to make the statement true. 093017051

(i) The side of a right angled triangle opposite to 90o is called _________. 

093017052

(ii) The line segment joining a vertex of a triangle to the mid-point of its 

opposite side is called a____________. 093017053

(iii) A line drawn from a vertex of a triangle which is _________to its

opposite side is called an altitude of the triangle. 093017054

(iv) The bisectors of the three angles of a triangle are __________. 093017055

(v) The point of concurrency of the right bisectors of the three sides of 

the triangle is ___________ from its vertices. 093017056

(vi) Two or more triangles are said to be similar if they are equiangular  and measures of their corresponding sides are_______________. 093017057

(vi) The altitudes of a right triangle are concurrent at the ____ of the right angle. 093017058

OBJECTIVE

Q.2 Choose the correct answer:  

293. A triangle having two sides congruent is called: ___ 093017059

(a) Scalene (b) Right angled

(c) Equilateral (d) Isosceles

294. A quadrilateral having each angle equal to 90o is called ____ 093017060

(a) Parallelogram (b)Rectangle (Board 2014)

(c) Trapezium (d)Rhombus

295. The right bisectors of the three sides of a triangle are ___ 093017061

(a) Congruent (b) Collinear

(c) Concurrent (d) Parallel

296. The __ altitudes of an isosceles triangle are congruent: 093017062  

(a) Two (b) Three (Board 2015)

(c) Four (d) None

297. A point equidistant from the end points of a line segment is on its __  093017063

(a) Bisector      

(b) Right bisector

(c) Perpendicular 

(d) Median

298. ___ congruent triangles can be made by joining the mid points of the sides of a triangle: (Board 2015) 093017064

(a) Three (b) Four

(c) Five (d) Two

299. The diagonals of a parallelogram ___ each other:   (Board 2014) 093017065

(a)   Bisect

(b) Trisect

(c) Bisect at right angle

(d)  None of these

300. The medians of a triangle cut each other in the ratio: (Board 2013, 15) 093017066

(a) 4:1 (b) 3:1

(c) 2:1 (d) 1:1

301. One angle on the base of an isosceles triangle is 30o. What is the measure of its vertical angle: (Board 2014) 093017067

(a) 30o (b) 60o

(c) 90o (d) 120o

302. If the three altitudes of a triangle are congruent then the triangle is _ 093017068

(a) Equilateral (b) Right angled

(c) Isosceles (d)      Acute angled

303. If two medians of a triangle are congruent then the triangle will be: 093017069

(a) Isosceles (b)  Equilateral

(c) Right angled (d)      Acute angled

304. A line segment joining a vertex of a triangle to the midpoint of its opposite side is called a ___ of the triangle: (a) Altitude    (b)Median     093017070

(c) Angle bisector   (d)Right bisector

305. A line segment from a vertex of  triangle perpendicular to the line containing the opposite side, is called an __ of the triangle: 093017071

(a) Altitude     (b) Median

(c) Angle bisector     (d) Right bisector

306. The point of concurrency of the three altitudes of a  is called its __ 093017072

(a) Ortho centre     (b) In centre

(c) Circumcentre      (d) None

307. The internal bisectors of  the angles of a triangle meet at a point called the _______ of the triangle: 093017073

(a) In centre (b) Ortho centre

(c) Circumcentre  (c) None

308. The point of concurrency of the three perpendicular bisectors of the sides of a triangle is called the ____ of the triangle. 093017074

(a)   Circumcentre   (b) In centre

(c)     Ortho centre   (d) None

309. Point of concurrency of three medians of a triangle is called. 093017075

(a) In centre three   (b) Ortho centre

(c) Centroid    (d) Circumcentre

310. Sum of interior angles of a triangle is …… (Board 2013, 14) 093017076

(a)   60o (b)  120o

(c)   180o (d)  240o

311. Sum of four interior angle of a rectangle is ……. 093017077

(a) 90o (b)  180o

(c) 270o (d)  360o

312. Sum of four interior angles of a parallelogram is ………… 093017078

(a)  90o (b)  180o

(c)  270o (d)  360o

313. Sum of four interior angles of a square is……. 093017079

(a)   360o (b)  270o

(c)   180o (d)  90o

314. Sum of four internal angles of a quadrilateral is ….. 093017080

(a) 60o (b)  120o

(c) 180o (d)  360o

315. The side opposite to right angle in right angled triangle is called….. 093017081

(a)   Base (b)  Perpendicular

(c)  Hypotenuse (d)  Altitude

316. The altitudes of a right angled triangle are concurrent at the …….. 093017082

(a)  Midpoint of hypotenuse

(b)  Vertex of right angle

(c)   Midpoint of base    (d)  Vertical angle

317. The triangles are said to be ….. if they are equiangular. 093017083

(a) Congruent (b)  Similar

(c) Equal (d)  Scalene

318. All the ….. right bisectors of sides of triangle are concurrent. 093017084

(a)   One (b)  Two

(c)  Three (d)  Four

319. All the three bisectors of angles of triangle are…… (Board 2014) 093017085

(a)   Congruent (b)  Concurrent

(c)  Parallel (d)  Perpendicular

320. All the three medians of a triangle are…….. 093017086

(a) Congruent (b) Concurrent

(c) Parallel (d) Perpendicular

321. All the three altitudes of a triangle are……… 093017087

(a) Congruent  

(b) Concurrent

(c)Parallel

(d) Perpendicular

322. In-centre is the point of concurrency of three….. of triangle. 093017088

(a)   Right bisectors   (b)  Angle bisectors

(c)   Altitudes      (d) Medians

323. Circumcentre is point of concurrency of three of three….. of triangle. 093017089

(a)  right bisectors   (b) angle bisectors

(c) altitudes   (d) medians

324. Ortho centre is the point of concurrency of three….. of triangle. 

(a) right bisectors 093017090

(b) angle bisectors

(c) altitudes

(d) medians

325. Centroid is the point of concurrency of three….. of triangle. 093017091

(a) right bisectors   (b) angle bisectors

(c) altitudes   (d) medians

326. In ambiguous case of triangle how many maximum triangles are constructed? 093017092

(a) one (b)  two

(c)three (d)  four

327. Three or more than three lines passing through the same point are called …… Lines. 093017093

(a) congruent

(b) concurrent

(c) parallel

(d) perpendicular

328. The common point of three or more than three lines is called…… 093017094

(a) central point

(b)  point of concurrency

(c) vertex

(d)  centroid

329. Which of the following can be constructed by compass? 093017095

(a) 15o (b)  25o

(c)  35o (d)  55o

330. Which of the following cannot be constructed with compass? 093017096

(a) 30o (b)  45o

(c)  75o (d)  95o

331. Which of the following is used to measure the angle? 093017097

(a) compass (b)  protractor

(c)  scale (d)  set square

332. In right-angled triangle if one angle is 30o, then other angle will be…..:

(a) 15o (b) 30o 093017098

(c)    45o (d) 60o (Board 2013)

333. In right-angled triangle if one angle is 60o, then other angle will be…..:

(a) 15o (b) 30o 093017099

(c) 45o (d) 60o

334. In right-angled triangle if one angle is 

45o, then other angle will be…..: 

(a) 15o (b) 30o   093017100

        (c)   45o (d) 60o

335. By drawing the right bisector of a line segment we can find its ____ point. 093017101

(a) end (b) midpoint

(c) fixed (d) trisection

336. By drawing the right bisectors of sides of a triangle we can find its _________. 093017102

(a) incentive (b) circumcentre 

(c) centroid (d) orthocentre

337. By drawing the angle bisectors of a triangle we can find its_____. 093017103

(a) incentre (b) circumcentre

(c) centroid (d) orthocentre

338. By drawing the medians of a triangle we can find its _______. 093017104

(a) incentre (b) circumcentre

(c) centroid (d) orthocenter

339. By drawing the altitudes of a triangle we can find its ____.                093017105

(a) incentre (b) circumcentre

(c) centroid (d) orthocentre

 

Q.3. Define the following:

i)  Define in Centre. 093017106

ii)  Define Circumcentre. (Board 2015) 093017107

iii)  Define Orthocentre. (Board 2014) 093017108

iv)  Define Centroid. (Board 2013) 093017109

v)  Define Concurrent lines. / What do you mean by Point of concurrency? 093017110

Vi ) Define median of triangle . 093017111

vii)  Define Altitude of a triangle.

viii) What is the ambiguous case of triangle?




Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.