12th Math Objectives


Unit

Functions & Limits

01

 

 

 

Multiple Choice Questions

q  Each question has four possible answers. Select the correct answer and encircle it.

 

 


Q.1        The term function was introduced by: 


            (a)        Euler                (b)        Newton                      

            (c)        Lagrange         (d)       Leibniz

Q.2                The symbol y = f(x) i.e. y is equal to f of x, invented by Swiss mathematician
---------.                                                                       
12801002

      (a)  Euler                (b)        Cauchy

      (c)  Leibniz                        (d)       Newton

Q.3                A function P(x) = 6x + 7x + 5x + 1 is called a polynomial function of degree
---------- with leading coefficient ------------.

12801003

      (a)  4 , 6                             (b)        2 , 7                            

      (c)  2 , 3                             (d)       2 , 5

Q.4                If a variable y depends on a variable       x in such a way that each value of x determines exactly one value of y, then y is a ------------ of x.                                       12801004

      (a)  Independent variable 

      (b)  not function    

      (c)  function                       (d)       None of these

Q.5                A function, in which the variables are
 ------------ numbers, then function is called a real-valued function of real numbers.

12801005

      (a)  complex                       (b)        rational                       

      (c)  real                              (d)       None of these

Q.6        Let ¦(x) = x + , then ¦ =        12801006

            (a)        ¦(x+ 1)                      (b)        ¦(x)     

            (c)                                      (d)       ¦(x)

Q.7        If ¦(x) = , then ¦(cos x) equals:

12801007

(a)  2 tan                  (b)        tan  

(c)  tanx                     (d)       cot

Q.8        Domain of the rational function
y =
is:                                     12801008

            (a)        Q(x) > 0                       (b)        Q(x) < 0

            (c)        Q(x) = 0                       (d)       Q(x) ¹ 0

Q.9        For the function ¦(x) = , f(1) is:

12801009

            (a)        x + 1                            (b)        undefined       

            (c)        indeterminate

            (d)       zero

Q.10  If a function f is from a set X to a set Y, then set X is called the ------------ of f.

12801010

      (a)  domain                        (b)        range              

      (c)  co-domain       (d)       None of these

Q.11 Let ¦(x) = then domain of ¦ is the set of all real numbers except:  12801011

         (a)  0                               (b)        1         

         (c)  2                               (d)       3

Q.12 Let ¦(x) = x, real valued function then domain of ¦ is the set of all:         12801012

         (a)  real numbers                        (b)  integers       

         (c)  complex numbers   

         (d)  natural numbers

Q.13 Let ¦(x) = , then domain of ¦ is the set of all real numbers except:  12801013    

         (a)           4, - 4               (b)        0         

         (c)           2, - 2               (d)       0, 4

Q.14 If ¦(x)= , then domain of ¦(x) is:                                             12801014

      (a)  [ 0,  ¥)             (b)       [ – 1,  ¥)                     

         (c)  [ 1,  ¥]                      (d)       [ 1,  ¥)

Q.15 If ¦(x) = , then range of ¦(x) is:                              (Board 2007) 12801015

      (a)  (– ¥¥)                       (b)        [ – ¥¥ ]                    

         (c)           [ 0,  ¥)             (d)       [ – 1,  ¥)

Q.16 The domain of the function
¦(x)= is:                               12801016

      (a)  R                                 (b)        R – { 2}

         (c)           R – {2 , –2}     (d)       R – {– 2}

Q.17 The range of the function ¦(x) = |x|  is:

      (a)  (– ¥ , ¥)         (b)       [0, ¥)   12801017

         (c)  (– ¥, 0]                    (d)       (0, ¥)

Q.18 Let ¦(x) = x, then range of ¦ is the set of all:                                 12801018

         (a)  real numbers

         (b)  non-negative real numbers

         (c)  non-negative integers         

         (d)  complex numbers

Q.19 Let ¦(x) = x+ 3, then domain of ¦ is the:                                               12801019

         (a)  Set of all integers    

         (b)  Set of natural numbers

         (c)           Set of real numbers   

         (d)          Set of rational numbers

Q.20  Domain = Range f and Range
= ------------.                                                            12801020

      (a)  Domain f                                                       

      (b)  Range f

      (c)  Domain

      (d) None of these

Q.21  A function P(x) = ax + ax
+ a
x + … + ax + ax + a is called a polynomial function of degree n, with leading coefficient a.                       12801021

      (a)  a = 0                      (b)        a = 0

      (c)  a ¹ 0                      (d)       a ¹ 0

Q.22  A function, in which the variable appears as exponent (power), is called a\an ------------ function.                                    12801022

      (a)  constant                      (b)        explicit

      (c)  exponential     (d)       inverse

Q.23 Let ¦(x) = , then range of ¦ is the set:                                         12801023

            (a)        ] - ¥, ¥ [        

(b) [0, ¥)

            (c)        [3, ¥]              

(d) [ -3, 3]

Q.24 Which of the following functions is a polynomial function?              12801044

     (a)  , x ¹ - 2   

         (b)  x+ 6x+ 7x+ x+ + 4

         (c) 

         (d)  ax+ b + c

Q.25  If the degree of a polynomial function is ----------, then it is called a linear function.

      (a)  0                                 (b)        1                      12801025

      (c)  2                                 (d)       3

Q.26  Let X and Y be the set of real numbers, a function C : X ® Y defined by C(x) = a " x ÃŽ X , a ÃŽ Y and a is a constant number. Then C is called a\an
------------ function.                                       
12801026

      (a)  constant                     

      (b) implicit

      (c)  identity                      

      (d) inverse

Q.27 Which of the following is a rational function?                               12801027

(a)  , x ¹ - 2

(b)  , x > 0

(c) 

(d)  , x ¹ 5

Q.28 Which one is a constant function?

         (a)           f(x) = x         (b)        f(x) = 12801028

         (c)  f (x) = x + 1   (d)  f(x) = 14

Q.29  A function I : X ® X for any set X, of the form I(x) = x " x ÃŽ X is called a\an
------------ function.                                       
12801029

      (a)  constant                      (b)        implicit

      (c)  identity                       (d)       inverse

Q.30  If x and y are so mixed up and y cannot be expressed in terms of the independent variable x, then y is called a\an ------------ function of x.                                 12801030

      (a)  constant                      (b)        explicit

      (c)  implicit                        (d)       inverse

Q.31 Which one is an identity function?

12801031

         (a)  f(x) =                     

         (b)           f(x) = g(x)

         (c)  f (x) = x                   

         (d)          f(x) = 1

Q.32 Which one is not an exponential function?                              12801032

         (a)  3                            (b)        n

         (c)  e              (d)       x

Q.33 Which one is an exponential function?

         (a)  2                            (b)        x                          12801033

         (c)  logx                       (d)       x

Q.34  If ¦(x) = ax + b, where a ¹ 0 , a and b are real numbers, then ¦(x) is a:    12801034

(a) constant function 

            (b)       absolute linear function

            (c)        linear function           

            (d)       quadratic function

Q.35  y = logx, where a > 0 and a ¹ 1 is called a   ------------- function of x.           12801035

      (a)  implicit                        (b)        explicit

      (c)  exponential     (d)       logarithmic

Q.36  y = logx  is known as the ----------- of x.                                                                                       12801036

      (a)  common logarithmic  

      (b)  natural logarithmic

      (c)  exponential     (d)       None of these

Q.37  If f(x) = |x| , f(x) is a                12801037

      (a)  constant function       

         (b)  absolute function

         (c)  linear function                    

         (d)  quadratic function

Q.38  If x =, Then y = logx = ln x, is known as the ------------ of x.                   12801038

      (a)  common logarithmic 

      (b)  natural logarithmic

      (c)  exponential                

      (d) None of these

Q.39 sinh x =                              12801039

         (a) 

         (b) 

         (c)           

         (d) 

Q.40 cosh x =                                    12801040

         (a)              (b)           

         (c)          (d) 

Q.41 tanh x =                              12801041

         (a)        

         (b)            

         (c)        

         (d)       

Q.42 sech x =                             12801042

         (a)         (b)                 

         (c)         (d)      

Q.43 csch x =                                    12801043

         (a)   (b) 

         (c)         (d) 

Q.44 coth x =                              12801044

         (a)                     (b)       

         (c)         (d)      

Q.45 coshx - sinhx =              12801045

         (a)  1                               (b)  - 1

         (c)  2                               (d)  - 2

Q.46 coshx + sinhx =                     12801046

         (a)  cosh x       (b)  cosh  2x

         (c)  sinh 2x                     (d)  tanh  2x

Q.47 sinh–1x =                             12801047

         (a)  ln (x + ) x > 1

         (b)  ln (x + )  for all x

         (c)

             (d)      ln         0 < x < 1

Q.48 cosh–1x =                            12801048

         (a)  ln (1 + )  x > 1

         (b)  ln (x +

         (c)    0 < x < 1

         (d) 

Q.49 tanh–1x =                                   12801049

         (a)  ln   |x| < 1

         (b)  ln    |x| < 1

         (c)           ln          0 < x < 1

         (d)  ln x  0

Q.50 sech–1x =                            12801050

         (a)  ln   |x| < 1

         (b)  ln     x  0

         (c)  ln    0 < x < 1

         (d)  ln     | x | <  1

Q.51 csch–1x =                            12801051

         (a)  ln     x 0

         (b)           ln   0 < x < 1

         (c)           ln          x  0

         (d)          ln   |x| < 1 

Q.52 coth–1x =                            12801052

         (a)  ln     |x| < 2

         (b)  ln |x| < 1

         (c)  ln |x|  0

         (d)  ln x > 1

Q.53 Inverse hyperbolic functions are expressed in terms of natural: 12801053

         (a)  numbers       (b)        exponentials

         (c)  logarithms    (d)       sines

Q.54 Which one is an explicit function?

         (a)  x+ 2xy + y + 7 = 0                       12801054

         (b)  xy + xy + xy+ 1 = 0

         (c)  y = x+ x+ + 10

         (d)  xy+ y+ xy = 4

Q.55  y = is a\an ------------ function of x.                                                                                      12801055

      (a)  constant                     

      (b)  implicit

      (c)  explicit                       

      (d) inverse

Q.56 Which one is an implicit function?

         (a)  y = ¦(x)        (b)        ¦(x, y) = c        12801056

         (c)  x = ¦(u), y = g(u)    

         (d)  y = ¦(u), u = g(x)

Q.57 Which one is an implicit function?

         (a)  xy + xy+ x+ y = 2                       12801057

         (b)  y = x+ 1

         (c)  x+ x+ x + 1 = y

         (d)  y = f(x)

Q.58 Which one is an explicit function?

         (a)  y = ¦(x)                                            12801058

         (b)           ¦(x, y) = 0       

         (c)  x = ¦(t), y = g(t)      

         (d)  none of these

Q.59  Every relation, which can be represented by a linear equation in two variables, represents a:               12801059

      (a)  graph              

         (b)  function

         (c)  cartesian product    

         (d)  relation

Q.60 A function from set X to set Y is denoted by:                                 12801060

         (a)  ¦ : X ® X   

         (b)           ¦ : Y ® Y

         (c)  ¦ : X ® Y   

         (d)          ¦ : Y ® X      

Q.61 If y is an image of x under the function f, we denote it by:        12801061

         (a)  x = ¦(y)        (b)        x = y   

         (c)  y = ¦(x)        (d)       ¦(x, y) = c

Q.62 The value of the parameter a, for which the function ¦(x) = 1 + ax, a ¹ 0 is the inverse of itself is:               12801062

         (a)  1                               (b)        - 1     

         (c)  2                               (d)       - 2

Q.63 The curves y = |x|+ 2|x|+ 1 and
y = x3+ 2x2+ 1 have the same graph for:

         (a)  x > 0                         (b)        x ³ 0    12801063

         (c)  x ¹ 0                         (d)       all x

Q.64 Parametric equations x = a cos t,
y = a sin t   represent the equation of:

         (a)  line               (b)        circle   12801064

         (c)  parabola       (d)       ellipse

Q.65  Parametric equations: x = a cos q
y = b sin
q represent the equation of: 12801065

      (a)  parabola          (b)        hyperbola                    (c)  ellipse                    (d)       circle

Q.66 Parametric equations x = a sec q,
y = b tan
q represent the equation of: 12801066

         (a)  line               (b)  parabola

         (c)  ellipse                      (d)  hyperbola

Q.67  If f(x) = , x ¹1 then f–1  (x) equals

      (a)                  (b)            12801067

         (c)               (d)      

Q.68 Inverse of ¦(x) =  is:         12801068

         (a)  ¦–1 (x) = x- 1        

         (b)  ¦–1 (x) =

         (c)  ¦–1 (x) = 1 - x       

         (d)  ¦–1 (x) = x+ 1

Q.69 Let ¦(x) = 4 - x, g(x) = 2x + 1, then
¦og (x) is:                                       12801069

         (a)  5 + 2x                     

         (b)           3 - 2x

         (c)  2 + 3x                     

         (d)          2 - 3x

Q.70 The perimeter P of square as a function of its area A is:         12801070

      (a)                                (b)       2

         (c)  4              (d)      

Q.71 The area A of a circle as a function of its circumference C is:          12801071

      (a)                                 (b)      

         (c)                              (d)      

Q.72 The volume V of a cube as a function of the area A of its base is:        12801072

      (a)               (b)  A

         (c)                       (d) 

Q.73 If f(-x) = f(x) for all x in the domain of f, then f is      :                           12801073

         (a)  constant function

         (b)  identity function     

         (c)  even function          

         (d)          odd function

Q.74 If f(- x) = - f(x) for all x in the domain of f, then f is:                       12801074

         (a)           linear function           

         (b)           identity function

         (c)           odd function             

         (d)          even function

Q.75 If f (x) is odd function. If and only if:

      (a)  f(– x) = – f(x)                          12801075

         (b)  f(– x) = f(x)

         (c)  f(x) = 3f( – x)          

         (d)  f(x)= – 3f( – x)

Q.76 f(x) is even function. If and only if:

      (a)  f(– x) = – f(x)                         12801076

         (b)  f(– x) = f(x)

         (c)  f(x) = 3f(– x)          

         (d)  f(x) = – 3f(– x)

Q.77 If f is any function, then is always:                                      12801077

      (a)  even                (b)       odd

         (c)  one-one                    (d)       zero

Q.78  f(x) = sin x + cos x is ------------ function.                                                                   12801078

      (a)  even               

      (b)  odd

      (c)  composite

      (d)  neither even nor odd function

Q.79 Let f(x) = cos x, then f(x) is an: 12801079

         (a)  even function                                                          

         (b)           odd function

         (c)  power function 

         (d)  none of these

Q.80 Let f(x) = x+ sin x, then f(x) is: 12801080

         (a)  even function          

         (b)  odd function

         (c)   power function  

         (d)  none of these

Q.81 Let f(x)= x+ cos x, then f(x) is: 12801081

         (a)  an odd function      

         (b)  an even function

         (c)  neither even nor odd          

         (d)  a constant  function

Q.82  If f(x) = x + 1, then the value of fof is equal to:                                                                   12801082

      (a)  x + 2x + 1   

         (b)  x – 2x + 2

         (c)  x + 2x + 2            

         (d)  x + 2x –  2

Q.83  If a relation is given by:                       12801083

R = then Dom of R is 

         (a)  { 2, 4, 6 ,10 }           (b)  { 2, 4, 6 }

         (c)  {  }                                       (d)       { 10 }

Q.84   is:    (Board 2007)   12801084

      (a)  Function                     (b)       Not a Function

         (c)  Ellipse                                  (d)       Line

Q.85   then f(0)= (Board 2005) 12801085

      (a)  –1                                            (b)  0

         (c)  1                                           (d)  ¥

Q.86  The linear function f(x) = ax+b is an identity function if:   (Board 2007)  12801086

      (a)  a = 0, b = 1                 (b)  a = 1, b = 0

      (c)  a = 1, b = 1                 (d)  a = 0, b = 1

Q.87  Let f(x) = 4 - x, then =    12801087

            (a)        x                                              (b)        - x

            (c)        4 + x                            (d)       x  - 4

Q.88  Let ¦(x) = , g(x) = 4 - x, then  ¦og (x) =                                                                         12801088

            (a)                                      (b)         

            (c)                                (d)       2 + 1

Q.89  Let  ¦(x) = - 2, g(x) = 2x + 1, then  fog(x) =                                                                               12801089

            (a)        2x + 1              (b)        - 2x

            (c)        4x + 3              (d)       - 2

Q.90  Let f(x) = 4 - x, g(x) = - 2, then
fog (x) =                                                                                    
12801090

            (a)        2                                  (b)        6

            (c)        8                                  (d)       5

Q.91  The function y = e = 2 is a\an
------------- function of x.                                
12801091

      (a)  constant                       (b)        explicit

      (c)  exponential      (d)       logarithmic

Q.92   If y = f(x), then the variable x is called ------------ variable of a function f.           12801092

      (a)  dependent       (b)        independent   

      (c)  image of y       (d)       None of these

Q.93    [f(x) - g(x)] = ------------. 12801093

      (a)  f(x) - g(x)  

      (b)  f(x) ´ g(x)

      (c)  f(x) + g(x)  

      (d)  f(x) ± g(x)

Q.94     [f(x)] = ------------.                      12801094

      (a)    f(x)                    (b)  n ´ [ f(x)]

      (c)  [ f(x)]                 (d)  None of these

Q.95   If k is any real number, then
[k.f(x)] = ------------. (Board 2012) 12801095

      (a)  k f(x)                  (b)  k x  f(x)

      (c)  f(x)                      (d)  None of these

Q.96   (Board 2005, 10) 12801096

         (a)  undefined                 (b)        3a2

         (c)  a2                                          (d)        0

Q.97 Limx(0x tan                          12801097

         (a)  equals 0                               (b)  equals 1

         (c)  equals ¥                   (d)  does not exist.

Q.98  If Limx(0 exists, then:                      12801098

      (a)   both Limx(0f(x) and Limx(0g(x) exist

         (b)  Limx(0f(x) exist but Limx(0g(x) need not exist

         (c)  Limx(0f(x) need not exist but Limx(0g(x) exist

         (d)  neither Limx(0f(x) nor Limx(0g(x) may exist.

Q.99  Limx(af(x) = l if and only if:      12801099

      (a)    Limh(0f(a + h) = l       

      (b)  Limh(af(a + h) = l

      (c)  Limx(af(a + h) = 0        

      (d)  Limh(0f(a + h) = 0

Q.100        is:                                  12801100

      (a)  x + 1                           (b)       2

         (c)  indeterminate           (d)  0

Q.101        Limx(2 =          12801101

      (a)  1                                              (b)        2

         (c)  3                                           (d)       4

Q.102        Limx( 3 =                                  12801102

      (a)                                                (b)       

          (c)                                            (d)      

Q.103        Limx( a = --------------12801103

      (a)  n a                             (b)        n a

         (c)  0                                           (d)       does not exist

Q.104        Limx( 4 =                                 12801104

      (a)  8                                              (b)        3

            (c)        10                                            (d)       0

Q.105        Limx(4 =                                  12801105

      (a)                                    (b)  

 (c)                                 (d)      

Q.106        Limx(16 =                                12801106

      (a)  2                                  (b)  5

            (c)  8                            (d)  7

Q.107        Limx(2 =                        12801107

      (a)                                    (b)       

            (c)                              (d)      

Q.108        Limx(0                              12801108

      (a)                                    (b)        1         

            (c)                                          (d)      

Q.109        Limx(0 =                         12801109

      (a)  1                                  (b)        5

            (c)        3                                  (d)      

Q.110        Limx(3 =                12801110

      (a)  1                                 

(b) 3

            (c)                                         

(d) None of these.

Q.111        Limx(( =                                 12801111

      (a)                                    (b)        1

            (c)        2                                  (d)       0

Q.112        f(x) = ; x ¹ 3 is discontinuous because:       (Board 2012)                          12801112

      (a) 

      (b)  does not exist

      (c)  does not exist

      (d)  None of these

Q.113        Let the function ¦(x) be defined by
¦(x) = , x ¹ 0 and ¦(0) = 0. Then: 12801113

      (a) Limx(0¦(x) exists and is equal to ¦(0)

         (b) Limx(0¦(x) exists but is not equal to ¦(0)

         (c) ¦(x) is continuous at x = 0  

         (d) None of these.

Q.114        Let ¦(x) = sin x. Then         12801114

      (a)  ¦(x) is continuous for all values of x

      (b)  ¦(x) is continuous for all values

             except x =

      (c)  ¦(x) is discontinuous at x = 0

      (d)  None of these.

Q.115        The value of f(0) so that
f(x) = (x+1)
 is continuous at x = 0 is:

12801115

         (a)  0                               (b)                

         (c)  e                               (d)       e

Q.116        represent:

(Board 2014) 12801116

         (a)  Line             (b)       Circle  

         (c)  Parabola       (d)       Hyperbola

Q.117        equals:

(Board 2014) 12801117

         (a)  0                               (b)              

         (c)                (d)      

Q.118        If then  

(Board 2013) 12801118

         (a)                         (b)         

         (c)                         (d)      

Q.119        If f (x) = x2x then f (–2) is equal to:

(Board 2015) 12801119

         (a)   2                  (b)   6                       

         (c)   0                   (d)  –6

Q.120         equals :

(Board 2015) 12801120

         (a)   e                   (b)   e–1                   

         (c)   e–2                (d) 

Q.121        If  then:

(Board 2015) 12801121

         (a)    a–x                 (b)   ax                      

         (c)    e–x                 (d)   ex

 

 

 

 

 

 

 

 

 

 

 


 


 

Short Answer Questions

 


Q.1      Define a function.   (Board 2012) 12801122

Q.2      Define domain and range of a function.                                                        12801123

Q.3      Let ¦(x) = x. Find the domain and range of ¦.                                            12801124

Q.4      Define a linear function.                      12801125

Q.5      Let ¦(x) = . Find the domain and range of ¦.                                             12801126

Q.6      Let  . Find the domain and range of ¦.                                    12801127

Q.7      Find domain of ¦(x) = 12801128

Q.8      Express the perimeter P of square as a function of its area A.                                           12801129

Q.9      Express the area A of a circle as a function of its circumference C.          12801130

Q.10        Express the volume V of a cube as a function of the area A of its base. 12801131

Q.11  Define Algebraic functions.     12801132

Q.12  Define a polynomial function.   12801133

Q.13  Define a linear function.                      12801134

Q.14  Define an Identity function.    12801135

Q.15  Define a quadratic function.        12801136

Q.16  Define a constant function.          12801137

Q.17  Define a rational function.            12801138

Q.18  Define explicit function.                12801139

Q.19  Define implicit function.               12801140

Q.20  Define exponential function.        12801141

Q.21  Define logarithmic function.      12801142

                                                     (Board 2007)

Q.22  What do you mean by real valued function of a real variable?                                   12801143

Q.23  Define sinh x, cosh x, tanh x in terms of natural exponential function.          12801144

Q.24  Define csch x, sech x, coth x in terms of natural exponential function.          12801145

Q.25  Define inverse of a function.      12801146

                                           (Board 2010)

Q.26  Define the composition function.

      12801147

Q.27  Is composite function commutative?

12801148

Q.28  Show that the parametric equations
x = a cos t and y = a sin t represent equation of the circle
x + y = a.                                             12801149

Q.29  If f(x) = , x ¹1 find f–1 (x)    12801150

Q.30  Write the hyperbolic cotangent function in terms of exponential function.            12801151

Q.31  Define the range of a function f from set X to set Y.                                                               12801152

Q.32  Show that the parametric equations
x = a sec
q, y = b tan q represent the equation of hyperbola   -  = 1. 12801153

Q.33  Without finding the inverse, state the domain and range of f.                                        12801154

                      given that f(x) =   ,  x ¹ 4

Q.34  Without finding the inverse, state the domain and range of f given that
f(x) =
,  x ¹ – 3                                          12801155

Q.35  Without finding the inverse, state the domain and range of f-1 given that
f(x) = (x – 5)
 , x ³ 5                                           12801156

Q.36  What is the domain and range of identity function?                                                     12801157

Q.37  What is the domain and range of polynomial function?                                   12801158

Q.38  Given f(x) = x - 2x + 4x - 1 , find f(0)                                                             12801159

Q.39  Given that  f(x) = x– x. Find f(– 2).

12801160

Q.40  Find   where f(x)=6x–9.

Q.41  Determine the function                                  

f(x) = 3x - 2x + 7 is an even or odd function.                                                      12801162

Q.42  Prove the identity:                                           

      Sinh 2x = 2 sinhx – cosh x         

(Board 2005, 12) 12801163

Q.43  Prove the identity: sechx =1–tanhx.

12801164

Q.44  Let the real valued functions f and g be defined by f(x) = 2x + 1 and g (x)=x-1. Then find the value of g(x).                                    12801165

Q.45     Without finding the inverse, state the domain and range of f, where
f(x) = 2 +
                                                        12801166

Q.46  Define the even functions. (Board 2012)

12801167

Q.47  Prove the identity (Board 2011)        12801168

      coshx + sinh x = cosh 2x

Q.48   If P(x) = ax + ax + ax
+ … + a
x + ax + a is a polynomial function of degree n, then show that          P(x) = P(c)                           12801169

Q.49   Prove the identity coshx-sinhx = 1

12801170

Q.50   Define the odd function.           12801171

Q.51   Let f:R ® R be the function defined by f(x) = 2x + 1. The find f–1 (x). 12801172

Q.52   Determine the function f(x) = is an even or odd function.                                             12801173

Q.53         Find  where f(x)=sin x

(Board 2008)                        12801174

Q.54         Find where f(x)=cos x

12801175

Q.55         Find the domain and the range of the function g(x) = 2x – 5.                       12801176

 

Q.56         Let f(x) = . Find the domain and range of f.                                                12801177

Q.57         Given f(x) = x - 2x + 4x - 1 and x   ¹ 0 , find f                                                  12801178

Q.58         Find the domain and the range of the function g(x)=

12801179

Q.59         Find the domain and the range of the function g(x) = . 12801180

Q.60   Given f(x) = x– ax + bx + 1

                If f(2) =  – 3 and f( – 1) = 0. Find the values of a and b.                                                               12801181

Q.61         Show that the parametric equations x = at, y = 2at represent the equation of parabola  y= 4ax.                                                12801182

Q.62         Find the domain and the range of the function g(x) = .                      12801183

Q.63         Prove the identity:                 

cschx = cothx – 1.            12801184

Q.64         Determine whether the function
f(x) = x
+ x is even or odd.                12801185

Q.65         Determine whether the function
f(x) = (x + 2)
 is even or odd.             12801186

Q.66         Determine whether the function
f(x) = x
+ 6 is even or odd. (Board 2007)

12801187

Q.67         Let the real valued functions f and g be defined by f(x) = 2x + 1 and g(x) = x - 1. Then find the value of f(x).            12801188

Q.68   Define the parametric functions. 12801189

Q.69         Determine whether the function
f(x) =
is even or odd.                12801190

Q.70         Given  g(x)= , x¹1. Find gog (x).

12801191

Q.71         Given   f(x) = ; g(x) =   ,
x
¹ 0. Find fog (x)                                           12801192

Q.72         Given   f(x)= ; g(x)= , x ¹ 0. Find gof (x).                                                               12801193

Q.73   Given   f(x) = . Find fof(x).

12801194

Q.74         Given f(x) = , x ¹ 1;  
g(x) = (x
+1). Find fog (x).              12801195

Q.75   Given f(x) =   , x ¹ 1;  

g(x) = (x+1). Find gof (x).              12801196

Q.76         For the real valued functions,
f(x) = – 2x + 8, find f
–1 (x).                  12801197

Q.77         Without finding the inverse, state the domain and range of f–1 given that
f(x) =
.                                                  12801198

Q.78         Find the domain and range of the function f(x) = x + 1.                              12801199

Q.79         Find the domain and range of the function defined by                                                       

f(x) =

12801200

Q.80  Explain meaning of the phrase          

“x approaches to zero”.                                     12801201

Q.81  Explain meaning of the phrase “x approaches to infinity”.                                     12801202

Q.82  Explain meaning of the phrase

x approaches to a”.                                     12801203

Q.83     What is the difference between
x = 1 and x ® 1?                                           12801204

Q.84  What is the difference between value and limit of a function?                                           12801205

Q.85  State the Sandwitch theorem.  12801206

Q.86  Express the limit (1 + 2h) in terms of the number ‘e’.                                               12801207

Q.87  Show that (3 - x) = e 12801208

Q.88  Evaluate:                                 12801209

Q.89  Evaluate:               12801210

Q.90  Evaluate                                12801211

Q.91  Evaluate                            12801212

(Board 2006, 09, 11)

Q.92  Express in terms of e.                          12801213

  

Q.93  Express in terms of e.                                     

                       12801214

Q.94  Express in terms of e.   

(1 + 3x)                                               12801215

Q.95  Express in terms of e.

(1 – 2h)                                               12801216

Q.96  Express in terms of e.

12801217

                                                          

Q.97  Evaluate:              12801218

Q.98  Evaluate:               12801219

Q.99      Evaluate:             

(Board 2012) 12801220

Q.100     Evaluate                              12801221

Q.101     Evaluate            12801222

Q.102     Evaluate

12801223

Q.103     Evaluate:              12801224

Q.104     Evaluate:              12801225

Q.105     Evaluate:     12801226

Q.106     Evaluate:      12801227

Q.107     Evaluate:       (Board 2007)

12801228

Q.108     Evaluate:                    12801229

(Board 2008, 12)

Q.109     Evaluate:       12801230

Q.110     Evaluate:              12801231

    (Board 2009)   

Q.111     Evaluate:                 12801232

Q.112     Evaluate:      12801233

Q.113     Evaluate:   , x < 0  12801234

Q.114     Evaluate:  , x >0 12801235

Q.115    Define the continuous and discontinuous functions.                                      12801236

Q.116    Discuss the continuity of the function ¦(x) at x = 3 if   ¦(x)=    if x ¹12801237

Q.117    Is the absolute-value function
f(x) = |x| continuous at 0?                                 
12801238

Q.118    Discuss the continuity of the function   f(x) at x = 3 if                                          

f(x) =     (Board 2008) 12801239

Q.119    Define the discontinuous function.

      (Board 2009)            12801240

Q.120  Discuss the continuity of f at x = 3, when f(x) =                     12801241

Q.121     For f(x) = 3x - 5x + 4, discuss continuity of f at x = 1.                                 12801242

Q.122     Determine whether f(x) exist, when f(x) =          12801243

Q.123     Discuss the continuity of the function g(x) at x = 3 if            g(x) =      if   x ¹ 3

12801244

Q.124     Determine whether f(x) exist, when f(x) =      12801245

Q.125     For f(x) = , discuss continuity of f at x = 1.                                                                  12801246

Q.126     Determine the left hand limit and right

Q.127     hand limit and then find limit of the function f(x) = 2x2 + x - 5 at x = 1. 12801247

Q.128     Determine the left hand limit and right hand limit and then find limit of the function f(x) = |x - 5| at  x = 5.      12801248

Q.129     Discuss the continuity of       

f(x) = at x = 2.     12801249

 

Q.130     Discuss the continuity of                   

f(x) = at x = 1.    12801250

 

Q.131     If f(x) = , find “c” so that f(x) exists.                                   12801251

Q.132     Find the values m and n, so that given function f is continuous: x = 3  12801252

         f(x) =

 

Q.133     Find the value of m, so that given function f is continuous: x = 4    

f(x) =                                   12801253

 

 

 

 

 

 

 

 

 

Unit

Differentiation

02

     

 

 

Multiple Choice Questions

 

q  Each question has four possible answers. Select the correct answer and encircle it.

 

 


Q.1            Sir Isaac Newton was a(an) --------- mathematician.                                      12802001

      (a) German                 (b)  French

      (c) Swiss                     (d) English

Q.2            Gottfried Whilhelm Leibniz was a(an) ---------- mathematician.       12802002

      (a) German                 (b)  English

      (c) Swiss                     (d) French

Q.3            The small change in the value of x, positive or negative is called the
---------- of x.                          
12802003

      (a) increment              (b)  differential

      (c) derivative              (d) None of these

Q.4            The symbol is used for the derivative of:                                       12802004

      (a) x with respect to y

      (b)      y with respect to y

      (c) y with respect to x

      (d)      x with respect to x

Q.5            if exists, is denoted by:         (Board 2007, 15)  12802005

      (a) f (x)                       (b)  f ¢(x)

      (c) f ¢(a)                      (d) None of these

Q.6            is called the derivative of f at ----------.  (Board 2005, 09) 12802006

 

      (a) x = a                      (b)  for all x

      (c) x ® a                    (d) None of these

Q.7            ---- used symbol for the derivative of y = f(x) with respect to x.                     12802007

      (a) Lagrange               (b)  Newton

      (c) Leibniz                  (d) Cauchy

Q.8            Notation Df(x) for derivative used by:                          (Board 2012)                                        12802008

           (a)  Cauchy            (b)  Newton

(c)  Leibniz            (d) Lagrange

Q.9            The quantity  is defined as: 12802009

           (a)  Lim(x(0          (b)  Lim(x(0

           (c)  Lim(y(0          (d) Lim(y(0

Q.10        If y = f(x) then is defined as: 12802010

           (a)  Lim(x(0 = Lim(x(0

           (b)  Lim(x(0 = Lim(x(0

           (c)  Lim(x(0 = Lim(x(0

           (d) Lim(x(0 = Lim(x(0

Q.11        The instantaneous rate of change of y with respect to x is given by:  12802011

           (a)                      (b) 

           (c)                      (d)

Q.12        The derivative of x with respect to y is given by:                                                        12802012

           (a)                            (b) 

           (c)                            (d) 

Q.13        If y = 5x , is given by:         12802013

           (a)  0 × 6x                    (b)   6x

           (c)  30 x                      (d)  30 x

Q.14        If y = x , then is given by: 

                                                      (Board 2015)  12802014

           (a)  x n            (b)   n x

           (c)  nx             (d)   x

Q.15        If y = , then is given by:  12802015

           (a)  2                 (b) 

           (c)                     (d)

Q.16        If y = f(u)  and u = F(x), then:  12802016

           (a)  = ¸    

           (b) = +

           (c)  = ´   

           (d) = ´

Q.17        If s is the distance traveled by a body at time t, the velocity is given by the expression:                                    12802017  

           (a)                       (b) 

           (c)                       (d)

Q.18        For a square of side x units, the rate of change of area with respect to the side is given by:                                          12802018

           (a)  x                      (b)  x

           (c)  2x                    (d) 2

Q.19        {c.f(x)} = (Board 2012) 12802019

      (a) c    (b)                    f(x)

      (c) c              (d) f(x)

Q.20        {f(x) - g(x)}¢ =                          12802020

      (a) f ¢(x) - g ¢(x)         (b)  f ¢(x) ´ g ¢(x)

      (c) f ¢(x) + g ¢(x)         (d)   f ¢(x) ± g ¢(x)

Q.21        [fog(x)]¢ =                     12802021

      (a) f ¢{g(x)}                (b)  f {g¢ (x)}

      (c) f ¢{g(x)}´g¢(x) (d)  None of these

Q.22        {f(x) ´ g(x)} =   (Board 2006) 12802022

      (a) f(x) ´    

      (b)  ´ g(x)

      (c) ´ g(x) + f(x) ´

      (d)   ´ g(x) - f(x) ´

Q.23                              

= , provided

(Board 2010)    12802023

      (a) g(x) ¹ f(x)             (b)  g(x) ¹ 0

      (c) g(x) = f(x)             (d) g(x) = 0

Q.24        (c) = -------------, where c is any constant.                                                   12802024

      (a) c    (b)                      0

      (c) 1    (d)                   - c

Q.25         where: 12802025

(Board 2007, 10)

      (a)                     (b) 

      (c)                     (d)

Q.26        (x) = n x, where n is any rational number is called ---------- rule.      12802026  

(Board 2007, 08, 09)

      (a) power rule            

      (b)      chain rule

      (c) derivative rule      

      (d)      product rule

Q.27        (Board 2012)                12802027

      (a)   (b)                   

      (c)                         (d)

Q.28        If y =  , 0 < x < 1, then is equal to:                                                 12802028

           (a)           (b) 

           (c)            (d) –

Q.29        =                   12802029

           (a)  n ´ f ¢(x)

           (b)  n ´ f ¢(y) ´

           (c)  n ´ f ¢(y)

           (d) n ´ f ¢(y) ´

Q.30        If y = , then is equal to:

 12802030

           (a)  –       (b)   

           (c)  –      (d) None of these.

Q.31        [g(x)] = n [g(x)] ´ where n is any rational number is called
---------- rule.                          
12802031

      (a) Power rule             (b)  Chain rule

      (c) Power and Chain rule 

      (d)      None of these

Q.32        (sin x) =                    12802032

      (a)    sin x                   (b)     cos x

      (c) - sin x                   (d) - cos x

Q.33        (cos x) =                   12802033

      (a)    sin x                   (b)  - cos x

      (c) - sin x                   (d)    cos x

Q.34        (tan x) =                               12802034

      (a)    sec x tan x          (b)    secx

      (c) - sec x tan x          (d)  - secx

Q.35        (– cosec x) = (Board 2011)      12802035

      (a)    cosec x cotx             (b)   cosecx

      (c)  + cosec x cotx             (d)   - cosecx

Q.36        (sec x) (Board 2007, 10)       12802036

      (a)    sec x tan x          (b)  -  secx

      (c) - sec x tan x          (d)     secx

Q.37        (– cot x) = (Board 2006)         12802037

      (a)    cosecx              

      (b) + cosecx  

      (c) - cosec x cot x     

      (d) cosec x cot x

Q.38         

(Board 2012)                     12802038

      (a)                   (b) 

      (c)                      (d)  

Q.39        (sinx) = (Board 2010)          12802039

      (a)                  (b)  -

      (c)                  (d) -

Q.40        (cosx) =                             12802040

      (a)                  (b) 

      (c) -              (d) -

Q.41        (cosecx) =                         12802041

      (a) -           (b) 

      (c) -           (d)

Q.42        (sinhx) =        (Board 2015) 12802042

      (a)                  (b)  -

      (c)                  (d) -

Q.43        If  then  12802043

      (a) cosx                      (b)  sec2x

      (c)                (d)  sinx

Q.44                                               (secx) =          (Board 2010)      12802044

      (a) -           (b) 

      (c) -           (d)

Q.45        (tanx) = (Board 2012)         12802045

      (a)                     (b)  -

      (c)                  (d)

Q.46        (cotx) =  (Board 2005)         12802046

      (a)                     (b)  -

      (c)                  (d)

Q.47        (Board 2010) 12802047

      (a) 0   (b)                    1

      (c) –1  (d)                   2

Q.48        (sinh x) =                              12802048

      (a)    sinh x                 (b)     cosh x

      (c) - sinh x                 (d) - cosh x

Q.49        (cosh x) =   (Board 2005)        12802049

      (a)    sinh x                 (b)     cosh x

      (c) - sinh x                 (d) - cosh x

Q.50        (tanh x) =                             12802050

      (a)    sech x tanh x        (b) - sech x tanh x

      (c)    sechx                 (d) - sechx

Q.51        (cosech x) =                          12802051

      (a)    cosech x coth x 

      (b)   cosechx

      (c) - cosech x coth x 

      (d)  - cosechx

Q.52        (sech x) =                             12802052

      (a)    sech x tanh x     

      (b) - sechx

      (c) - sech x tanh x     

      (d)   sechx

Q.53        (coth x) =                             12802053

      (a) cosech x coth x   

      (b)  - cosechx

      (c) - cosech x coth x      

      (d)   cosechx

Q.54        (Board 2012)          12802054

      (a)               (b) 

      (c)             (d) 

Q.55        (tanhx) = (Board 2011)       12802055

      (a) , |x| < 1      

      (b)     

      (c)                   

      (d)     

Q.56        (coshx) =                           12802056

      (a) -              (b) 

      (c)                  (d) -

Q.57        (cosechx) =                        12802057

      (a)              

      (b)  -   x > 0

      (c) -            (d)       

Q.58                                               (sech x) =                   12802058

(a)  -           0 < x < 1

(b)   

(c)               (d) -

Q.59        If y = e2x then y2 = (Board 2005) 12802059

      (a) e2x (b) 2e2x

      (c) 4e2x                       (d) 16e2x

Q.60        (a) =    (Board 2011)   12802060

      (a) a   (b) 

      (c) ax . ln a                  (d)  x

Q.61           (Board 2012)               12802061

(a)               (b) 

(c)                  (d)

Q.62        (logx) =  (Board 2007)           12802062

      (a)     (b)                   

      (c) x . ln a                   (d) x ×

Q.63        then   (Board 2009)       12802063

      (a)                    (b) 

      (c)                   (d)

Q.64        (Board 2006) 12802064

      (a)                  (b) 

      (c)                    (d)

Q.65        y = cos x then (Board 2012) 12802065

      (a) y4 + y = 0               (b)  y4 – y =0

      (c) y2 - y = 0              (d) y3 - y = 0

Q.66        1 + x + + + ××× =    12802066

      (a) e   (b)                    sin x

      (c) ln x                        (d) cos x

Q.67        ------------------ = 1 + nx + x

           + x + ×××           12802067

      (a) e   (b)                    sin x

      (c) (1 + x)                  (d) cos x

Q.68        x - + - + ××××× =            12802068

      (a) e   (b)                    sin x

      (c) (1 + x)                  (d) cos x

Q.69         is Maclaurin’s series expansion of   (Board 2012)      12802069

(a)   Cos x               (b)  sin x

(c)  ln (1 - x)               (d) ln (1 + x)

Q.70                                               f(x) = f(0) + x(0) + (0) + … is called:               (Board 2008)       12802070

(a)  Taylor’s series         

(b)  Binomial series

(c)  Machlaurin’s series 

(d) Laurent series

Q.71                                               Sin x =       (Board 2009)  12802071

(a)  x – + ….

(b)  1- + …….

(c)  - x -

(d) x -  + ….

Q.72        The Maclaurin series expansion is valid only if it is:                                      12802072

      (a) convergent            (b)  divergent

      (c) increasing              (d) decreasing

Q.73        The slope of the tangent line to the graph of f defined by the equation
y = f(x) at (x , f(x)) is:                         
12802073

      (a) f (x)                       (b)  f ¢(x)

      (c)                        (d)

Q.74        Let f be defined on an interval (a, b) and let x, x ÃŽ (a, b). Then f is an increasing on the interval (a, b) if -------- whenever x > x                              12802074

      (a) f(x) = f(x)          (b)  f(x) > f(x)

      (c) f(x) ¹ f(x)          (d) f(x) < f(x)

Q.75        Let f be a differentiable function on the interval (a, b). Then f is a decreasing on (a, b) if --------- for each x ÃŽ (a, b). 12802075

      (a) f ¢(x) ¹ 0                (b)  f ¢(x) > 0

      (c) f ¢(x) = 0                (d) f ¢(x) < 0

Q.76        If f(c) £ f(x) for all x ÃŽ (c-dx,c+ dx), then the function f is said to have a\an
---------- at x = c.                     
12802076

      (a) decreasing             (b)  increasing

      (c) relative maxima    

      (d)      relative minima

Q.77        Let f be differentiable function in a neighborhood of c where f ¢(c)=0. Then f has relative minima at c if f ¢¢(c) ----.12802077

      (a) = 0 (b)                    > 0

      (c) ¹ 0 (d)                   < 0

Q.78                                               Let f be defined on an interval (a, b) and let x, x ÃŽ (a, b). Then f is a\an
--------
on the interval (a, b) if f(x) < f(x) whenever x > x                           12802078

      (a) increasing              (b)  decreasing

      (c) maxima                  (d) minima

Q.79        If f ¢(c) = 0, then the number c is called a ---------- value of f.                         12802079

      (a) Critical                  (b)  Stationary

      (c) Extrema                 (d) None of these

Q.80                                               The function f(x)= –3x2 has mini-

mum value at:   (Board 2006) 12802080

(a)  x = 3                         (b)  x = 2

(c)  x = 1                         (d) x = 0

Q.81                                               The minimum value of the function     f (x) = x2 – x – 2 is: (Board 2007)           12802081

(a)  (b)                    

(c)  - 1   (d)                     0

Q.82                                                   (Board 2014) 12802082

(a)       

(b)                                     

(c)                          

(d)   

Q.83                                               If  then   12802083

(Board 2014)

(a)      (b)  

(c)                                (d)   3

Q.84                                                 (Board 2014)    12802084

(a)                       (b)  

(c)                      (d)       

Q.85                                               If then  is:    12802085

(Board 2014)

(a)      (b)  

(c)                            (d)    

Q.86                                               If  then                  12802086

(Board 2014)

(a)                          (b)  

(c)                        (d)    

Q.87                                               If then  equals:

(Board 2014) 12802087

(a)                          (b)  

(c)                       (d)    

Q.88                                               The differential co-efficient of  equals:              (Board 2014) 12802088

(a)                 (b)  

(c)           (d)  

Q.89                                               is equal to:    12802089

(Board 2014)

(a)                          (b)  

(c)                        (d)  

Q.90                                               If then  equals:

(Board 2014) 12802090

(a)  tan x                         (b)   cot x

(c)     – tan x                     (d)   – cot x

 

Q.91                                               Notation for derivative was used by Newton is:            (Board 2013)       12802091

(a)    (b)  

(c)                      (d)  

Q.92                                               is:         12802092

(Board 2013)

(a)      

(b)  

(c)                  

(d)  

 

Q.93                                               is:       (Board 2013) 12802093             

(a)                      (b)  

(c)                    (d)  

Q.94                                                If f(x) = cos x then f (0) is equal to :

                                     (Board 2015) 12802094             

(a)    0                       (b)   –1                   

(c)    1                      (d)   

Q.95                                               If f (x) = eax then  (x) is equal to:

                                     (Board 2015) 12802095             

      (a)                   (b)       –                

      (c)      aeax            (d)     –aeax

Q.96                                               If then y1 equals:

                            (Board 2015) 12802096             

   (a) cosec x cot x       (b)   –cosec x cotx             (c)   sec x tan x        (d)    –sec x tan x

Q.97                                               [n x] is equal to:

                            (Board 2015) 12802097             

   (a)                        (b)                         

   (c)    2                           (d)       

Q.98                                               equals:

                            (Board 2015) 12802098             

            (a)               (b)            

            (c)                  (d) 

Q.99                                               If f (x + h) = cos (x +h), then  (x) equals:                     (Board 2015) 12802099             

   (a)    cos x                         (b)   –cos x             

   (c)   sin x                           (d)  –sin x

 

 


 

 


Short Answer Questions

 


Q.1   What is increment of x?         12802100

Q.2               Write down the instantaneous rate of change of distance ‘S’ at time ‘t’. 12802101

Q.3               What is the derivative of f(x) with respect to x at x?    (Board 2012) 12802102

Q.4               What is the derivative of f(x) with respect to x at a? (Board 2012)  12802103

Q.5               Find by definition the derivative of f(x) = xm, .          (Board 2012) 12802104

Q.6               LetFind dy.          

(Board 2011,  12) 12802105

Q.7               If .  Find dy.     

(Board 2012) 12802106

Q.8               Find the derivative of f(x) = c by definition.     (Board 2010)           12802107

Q.9               Find the derivative of f(x) = x by ab-initio method.                        12802108

Q.10           Find the derivative of f(x) = at x = a from first principles. (Board 2011) 12802109

Q.11           Define product rule of differentiation.                                  12802110

Q.12           Define quotient rule of differentiation.                                 12802111

Q.13           Find the derivative (x + 1) with respect to ‘x’.          (Board 2011)           12802112

Q.14           Find the derivative of y = x + x + x + 2x + 5 with respect to ‘x’. 12802113

Q.15           Differentiate w. r. t. ‘x’ : 

12802114

Q.16           Deduce the differential coefficient of sec x from that of cos x.                     12802115

Q.17           Differentiate  x     w.r.t  x.

12802116

Q.18           If  y =  

prove that = secx.          12802117

 

Q.19           Differentiate w. r. t. ‘x’:

x+ 2x+ 3                    12802118

Q.20           Differentiate w.r.t.‘x’:x+2x+ x

(Board 2005) 12802119

Q.21           Differentiate w. r. t. ‘x’ :  

(Board 2008, 10, 11, 12) 12802120

Q.22           Differentiate w. r. t. ‘x’ :

(Board 2008) 12802121

Q.23           Find if .

(Board 2012) 12802122

Q.24           Differentiate w.r.t. ‘x’:

(Board 2006, 10)  12802123

 

Q.25           Differentiate w.r.t. ‘x’:           12802124

Q.26           Differentiate w. r. t. ‘x’:

(Board 2009) 12802125

Q.27           If   y = , show that   

2x + y = 2               (Board 2010) 12802126

Q.28           If y = x + 2x + 2, prove that

= 4x     (Board 2007) 12802127

Q.29           If tan y (1 + tan x) = 1 - tan x, show that = - 1.                                        12802128

Q.30           Find by making suitable substitution in the function defined as 
y = (3x
- 2x + 7)                               12802129

Q.31           Find if y + x - 4x = 5.      12802130

Q.32           Find if x + y = 4.             

(Board 2007,09) 12802131

Q.33           If x and y are the functions of t, then what is by chain rule.                    12802132

Q.34           Differentiate (1 + x) w. r. t x.

12802133

Q.35           Find if x = at and y = 2at.

(Board 2005) 12802134

Q.36           Differentiate x  w.r.t x 

(Board 2012) 12802135

Q.37           Find  if

(Board 2012)   12802136

Q.38           Find if 3x + 4y + 7 = 0        12802137

Q.39           Find if  xy + y = 2 12802138

Q.40           Find if  y = x cos y                         

        (Board 2009) 12802139

Q.41           Find if  x = y sin y 12802140

Q.42           If. Find y2.

(Board 2012)                  12802141

Q.43           Find if y = sinh 2x  12802142

Q.44           Deduce the differential coefficient of cosec x from that of sin x.                  12802143

Q.45           Find if y = tanhx             

(Board 2010, 2011) 12802144

Q.46           Differentiate tanx with respect to ‘x’.                                                        12802145

Q.47           Differentiate cosx with respect to ‘x’.                                                        12802146

 

Q.48           Differentiate w. r. t. ‘x’ : cos

12802147

Q.49           If y = cot . Find .      

(Board 2012) 12802148

Q.50           Differentiate w. r. t. ‘x’ : sin

Q.51           Differentiate sinx with respect to ‘x’.                                                         12802150

Q.52           If  y = Tan (þ Tan x),  show that  y  – þ =  0.   (Board 2012)

12802151

Q.53           Differentiate y = a with respect to ‘x’.                                                         12802152

Q.54           Differentiate ln (x + 2x) with respect to ‘x’.                                     12802153

Q.55           Differentiating y=e with respect to ‘x’.                             (Board 2009)      12802154

Q.56           Find if y = a                    12802155

Q.57           Find if y = log(ax + bx + c)

12802156

Q.58           Find  if  f(x) = e

(Board 2009) 12802157

Q.59           Find if  f(x) = e

(Board 2012) 12802158

Q.60           Find f¢(x) if  f(x) = x e   ;   (x ¹ 0)

12802159

Q.61           Find if  f(x)= e (1 + ln x) 12802160

Q.62           Differentiate a by ab-initio with respect to x.                                              12802161

 

Q.63           Differentiate y = a with respect to ‘x’.                                                         12802162

Q.64           Find if y = e                 12802163

Q.65           Find f¢ (x) if  f(x) =      12802164

Q.66           Find f¢(x) if  f(x) = ln

12802165

Q.67           Find if  y = x 12802166

Q.68           Find if  y =                  12802167

Q.69           Find if  y = x ln               12802168

Q.70           Find if   y = ln (9 - x)      

(Board 2009) 12802169

Q.71           Find if y = e sin 2x        12802170

Q.72           Find if  y = e   

(Board 2009)12802171

Q.73           Find if  y = x e  12802172

Q.74           Find if  y = 5 e            12802173

Q.75           Differentiate (ln x) with respect to ‘x’.                                   (Board 2009)     12802174

Q.76           Find if y =(ln x)   (Board 2009)

12802175

Q.77           Find if y = cosh 2x    (Board 2008)

12802176

Q.78           Find if  y = sinh 3x 12802177

Q.79           Find if y = sinh 2x  12802178

Q.80           Find if  y = ln (tanh x)       12802179

Q.81           Differentiate sinh x with respect to ‘x’.                                                      12802180

Q.82           Find if y = sinh (ax + b) 12802181

Q.83           Differentiate cosh x with respect to ‘x’.                                                     12802182

Q.84           Find if  y = tanh (sin x),

< x <                                            12802183

Q.85           Find if  y = sinh(x)        12802184

Q.86           Find if   y = sinh        12802185

Q.87           Differentiate tanh x with respect to            ‘x’.       (Board 2009)                 12802186

Q.88           Find y if  x = at , y = bt       12802187

Q.89           Find y if  y=2x-3x + 4x + x - 2

(Board 2012)              12802188

Q.90           Find y if  y = (2x + 5)           12802189

Q.91           Find y if  y = x × e  

(Board 2008, 09, 10, 11)          12802190

Q.92           Find y if x + y = a  12802191

Q.93           Find y2 if y = sin 3x                 12802192

(Board 2008, 10, 12)

Q.94           Define a power series expansion of a function.                                             12802193

Q.95           Define the Maclaurin series expansion.                                            12802194

Q.96           State Taylor’s Theorem.        12802195

(Board 2012)

Q.97           Apply the Maclaurin expansion to prove that:                                             12802196

ln (1 + x) = x - + - + ……………..

Q.98           Apply the Maclaurin expansion to prove that:         (Board 2011)                  12802197

cos x = 1 - –  +  …...........

Q.99           Apply the Maclaurin expansion to prove that:                                             12802198

      = 1 + - + + …...........

Q.100        Apply the Maclaurin expansion to prove that:         (Board 2011)                    12802199

      e = 1 + x + + + ……….

Q.101        Apply the Maclaurin expansion to prove that:  e = 1 + 2x + + + …

(Board 2012)   12802200

Q.102        Show that: cos (x + h) = cos x - h sin x - cos x + sin x + …                12802201

Q.103        Expand f(x) = in the Maclaurin series.                                                 12802202

Q.104        Prove that e                     

= e 12802203

Q.105        Show that  2 = 2 {1 + (ln 2)
h + (ln 2)
h + (ln2) h + …}            12802204

Q.106        What is geometrical meaning of the derivative?                                          12802205

Q.107        Define an increasing function. 12802186

Q.108        What is critical value?           12802207

Q.109        What is relative maxima of a function.                                             12802208

Q.110        State first derivative rule.      12802209

Q.111        State second derivative rule. 12802210

Q.112        What is relative extrema of a function?                                            12802211

Q.113        What is Stationary point?     12802212

Q.114                    What is critical point?            12802213

Q.115        Define the turning point.       12802214

Q.116        Determine the values of x for which f defined as                                         

f(x) = x + 2x - 3 is increasing.           12802215

Q.117        Determine the values of x for which f defined as f(x) = x + 2x - 3 is decreasing.

12802216

Q.118        Determine the intervals in which
f is a decreasing if f(x) = x
- 6x + 9x.

12802217

Q.119        Determine the intervals in which f is increasing and decreasing if f(x ) = x.

12802218

Q.120        Determine the intervals in which f is increasing or decreasing for the domain mentioned. f(x) = 4 - x ,    x ÃŽ (- 2 , 2)         

    (Board 2008)  12802219

Q.121        Determine the intervals in which f is increasing or decreasing for the domain mentioned. f(x) = x + 3x + 2,    x ÃŽ (- 4, 1)

(Board 2008)   12802220

Q.122        Examine the function defined as
f(x) = 1 + x
for extreme values.         12802221

(Board 2008,  09, 10)

Q.123        Find the extreme values for the following function defined as:                   

f(x) = x - x - 2                                  12802222

Q.124        Find the extreme values for the following function defined as:  (Board 2009)

      f(x) = 3x - 4x + 5                        12802223

Q.125        Find two positive integers whose sum is 30 and their product will be maximum.                                       12802224

Q.126        Divide 20 into two parts so that sum of their squares will be minimum.     12802225

(Board 2012)

 

 


 

Unit

Integration

03

     

 

Multiple Choice Questions

q  Each question has four possible answers. Select the correct answer and encircle it.

 

 

 

 

 


Q.127     The term dy (or df) = f ¢(x) dx is called the -------------------------- of the dependent variable y.                     12803001

      (a)  differentiation

      (b)  integration

      (c)  differential     

      (d)  None of these

Q.128     The technique or method to find such a function whose derivative is given involves the inverse process of differentiation called:                    12803002

      (a)  differentiation      

      (b)  integration

      (c)  differential                 

      (d)  None of these

Q.129     f (x) dx = f(x) if:                   12803003

      (a)  f (x) = f(x)     

      (b)  [f (x)] = f(x)

      (c)  [f (x)] = f (x)        

      (d)  [f (x)] = f(x) + c

Q.130     If f (x) is the integral of f(x), then
f(x) dx is given by:                          12803004

      (a)  f (a) + f (b)   

      (b)  f (a) ¸ f (b)

      (c)  f (a) – f (b)    

      (d)  f (b) – f (a)

Q.131     Iff1(x) and f2 (x) are any two antiderivatives of a function f (x), then
f(x) – f(x) =                                     12803005

      (a)  f (x)    (b)  a variable

           (c)  0                 (d)  a constant

Q.132     An integral of 3x is:                12803006

      (a)  x+c    (b)  3

      (c)  6x                    (d)  x+c

Q.133     If = f(x) + c, then f(x) is called          :                                                           12803007

      (a)  integration                 

      (b)  integrand

      (c)  constant of integration           

      (d)  None of these

Q.134    = -------- + c , (n ¹ - 1)

      (a)  n(ax + b)´ a                      12803008

      (b)  ´         

      (c)        

      (d)  None of these

Q.135     = --------- + c, (l ¹ 0)

1.       12803009

      (a)  e            (b)  l e

      (c)  m e         (d)  e

Q.136     = ---------------, where a is any constant.                                     12803010

      (a)                  (b)  f(x)

      (c)  a ´      (d)  a +

Q.137     = ------------ + c, f(x) > 0

                        (Board 2015)   12803011  

      (a)  f(x)                  (b)  ln |f(x)|     

      (c)  f ¢(x)    (d)  ln |f ¢(x)|

Q.138     If f¢(x) = f(x), then f(x) is called a\an
--------------------- of f(x).                     
12803012

      (a)  derivative        (b)  differential

      (c)  integral            (d)  None of these

Q.139     The is symbol for:    12803013

      (a)  integration                 

      (b)  integration w.r.t.x

      (c)  differentiation     (d)  None of these

Q.140     = ------------------ + c  12803014

      (a)  nx  (b)  (n + 1)x

      (c)    (d)  None of these

Q.141     = --------- + c, (a ¹ 0).

      (a)  cos (ax + b)              12803015

      (b)  - cos (ax + b)

      (c)  sin (ax + b)      

      (d)  - sin (ax + b)

Q.142     = -------------------- ln|sec (ax + b)| + c, (a ¹ 0)                       12803016

      (a)                        (b)  b

      (c)  -                   (d)  ax + b

Q.143     = ---------------- + c. 12803017

      (a)  ln |sin x|          (b)  - ln |sin x|

      (c)  ln |cos x|          (d)  - ln |cos x|

Q.144     = -------------------- tan (ax + b) + c, (a ¹ 0)                12803018

      (a)   a                     (b)  

      (c)   b                     (d)  ax + b

Q.145     = -------------- + c. 12803019

      (a)  cot x    (b)  - cot x

      (c)  cosec x cot x

      (d)  -cosec x cot x

Q.146     =    (Board 2015) 12803020

      (a)  tan x + c          (b)   - tan x + c

      (c)  sec x + c          (d)  - sec x + c

Q.147     = (Board 2012)       12803021

      (a)  ln |cos x| + c

      (b)  ln |sec x| + c

      (c)  ln |sin x| + c

      (d)  None of these

Q.148     = -------  + c, (a ¹ 0)

      (a)   cos (ax + b)             12803022

      (b)  - cos (ax+b)

      (c)  sin (ax + b)    (d)  - sin (ax+b)

Q.149     = ---------- cot
(ax + b)
+ c, (a ¹ 0)                              12803023

      (a)                        (b)  b

      (c)  -                   (d)  ax + b

Q.150     = ------, (a ¹ 0)                                                    12803024

      (a)  tan (ax + b) + c                   

      (b)  - tan (ax + b) + c

      (c)  sec (ax + b) + c                   

      (d)  - sec (ax + b) + c

Q.151     = ----- + c, (a ¹ 0)

(Board 2012)         12803025

      (a)    ln |cos (ax + b)|                 

      (b)  - ln |sin (ax + b)|

      (c)    ln |sin (ax + b)|                  

      (d)  - ln |cos (ax + b)|

Q.152     =                 12803026

      (a)  +

      (b)  -

      (c)  ´

      (d)  ±

Q.153      is the method of:                                                                 12803027

      (a)  integration             (b)  differentiation

      (c)  integration by parts    

      (d)  None of these

Q.154     = ---------.  (Board 2015) 12803028

      (a)  cos x + c         (b)  - cos x + c

      (c)  sin x + c          (d)  - sin x + c

Q.155     = -----------.               12803029

      (a)  tan x + c          (b)  - tan x + c

      (c)  sec x tan x + c

      (d)  - sec x tan x+c

Q.156     = ---- cosec (ax + b) + c, (a¹0) where c is the constant of integration.            12803030

      (a)  a                      (b)  - a

      (c)  -                   (d)   -

Q.157     = --------------------- + c, (ax + b ¹ 0, a ¹ 0)                         12803031

      (a)  ln |ax + b|        (b)       ln |bx + a|

      (c)  a  ln |ax + b|

      (d)  ln |ax + b|

Q.158     dx =             12803032

      (a)  + c

           (b)  + c

           (c)  + + c

           (d) 

Q.159     =                           12803033

      (a)  ln |sec x + tan x| + c   

      (b)  ln |cosec x - cot x| + c

      (c)  ln |sec x - tan x| + c   

      (d)  ln |cosec x + cot x| + c

Q.160     = --------------- + c, (n ¹ - 1)                                     12803034

      (a)  (n + 1) f(x)]                    

      (b)  f(x)

      (c)  n f(x)]      (d) 

Q.161     If , then ‘a’ is known as the ---------------------- of integration.         12803035

      (a)  domain            (b)  range

      (c)  lower limit      (d)  upper limit

Q.162     If = f(x) + c, as c is not definite, so f(x) + c is called the
--------------------- of f(x).                     
12803036

      (a)  integral            (b)  indefinite integral

      (c)  differential      (d)  None of these

Q.163     If = f(x) + c, then c is called:

      (a)  integration      (b)  integrand   12803037

      (c)  constant of integration           

      (d)  None of these

Q.164     = -------------- + c.      12803038

      (a)  cos x   (b)  - cos x

      (c)  sin x    (d)  - sin x

Q.165     =                   12803039

      (a)  cosec x + c      (b)  - cosec x + c

      (c)  cot x + c          (d)  - cot x + c

Q.166     = --------- + c, (a > 0, a ¹ 1)

      (a) a                     (b)               12803040

      (c)            (d) 

Q.167     To integrate dx we will make substitution:                               12803041

      (a)  x = 3 sec q       (b)  x = 3 tan q

           (c)  x = 3 sin q   (d)  x = 3 sinh q

Q.168     To integrate dx we will make substitution:                               12803042

      (a)  x = 2 tan q       (b)  x = 2 sec q

           (c)  x = 2 cos q  (d)  None of these.

Q.169     To integrate  dx we will make substitution:                                12803043

      (a)  x = 3 tan q       (b)  x = 3 sec q

           (c)  x = 3 sin q   (d)  x = 9 tan q

Q.170     To integrate dx we will make substitution:                              12803044

      (a)  5x = 3 sec q    

           (b)  x = 3 sec q

           (c)   x = 3 sin q  (d)  5x = 3 sin q

Q.171     To integrate dx we will make substitution:                               12803045

      (a)  x =  3 tan q      (b)  2 x = 3 tan q

           (c)  x =  tan q     (d)  x = 9 tan q

Q.172     To integrate dx we will make substitution:                                12803046

      (a)  x = 100 sin q

           (b)  x = 10 sin q

           (c)  x = 10 tan  q

           (d) x = 10 sin q

Q.173     =                     12803047

      (a)  f(x) × g(x) + + c

      (b)  f(x) × g(x) - + c

      (c)  f(x) × g(x) ´ + c

      (d)  f(x) × g(x) + c

Q.174     lnx dx =        (Board 2012,15)    12803048

           (a)  x lnx + x + c  

           (b)  x lnx - x + c

           (c)  x lnx + c     (d)  None of these.

Q.175     (Board 2012)

2.       12803049

           (a)       (b) 

           (c)      (d) 

Q.176     If f¢(x) = f(x) and has a definite value f(b) - f(a), then it is called the ---------------------- of f from a to b. 12803050

      (a)  integration by parts    

      (b)  definite integral 

      (c)  differentiation

      (d)  None of these

Q.177     If the upper limit is a constant and the lower limit is a variable, then the integral is a function of:            12803051

      (a)  x                      (b)  y

      (c)  lower limit      (d)  upper limit

Q.178     If , then the interval [a, b] is called the --------------------- of integration.

      (a)  domain            (b)  range         12803052

      (c)  lower limit      (d)  upper limit

Q.179     If , then ‘b’ is known as the ---------------------- of integration.        12803053

      (a)  domain            (b)  range

      (c)  lower limit      (d)  upper limit

Q.180     The area of the region, above the
x-axis and under the curve y = f(x) from a to b is given by ------------ .                    
12803054

      (a)          (b)   -

      (c)          (d)   None of these

Q.181     If the graph of f is entirely above the x-axis, then the definite integral is
-----------------.                                     
12803055

      (a)  positive          

      (b)  positive or negative

      (c)  negative    

      (d)  positive and negative

Q.182     If  

3.       then        (Board 2012)      12803056

      (a)  8                      (b)  5

      (c)  3                      (d)  5–3

Q.183     If the lower limit is a constant and the upper limit is a variable, then the integral is a function of:                         12803057

      (a)  x                                 

      (b)  y

      (c)  lower limit                 

      (d)  upper limit

Q.184     as the area under the curve y = f(x) from x = a to x = b and the x-axis is called     :                                               12803058

      (a)  integration by parts    

      (b)  definite integral         

      (c)  differentiation

      (d)  None of these

Q.185     = ------- + c

      (a)  e                  (b)  f(x)           12803059

      (c)  e f(x)           (d)  e  + f(x)

Q.186     =                               12803060

      (a)       (b)  -

      (c)       (d)  ±

Q.187     + = ------------- ; where  a < b < c.                           12803061

      (a)           (b) 

      (c)           (d) 

Q.188       (Board 2012)     12803062

      (a)  0                      (b) 

           (c)  –1              (d)  1

Q.189     If the graph of f is entirely below the x-axis, then the definite integral is: 12803063

      (a)  positive     

      (b)  positive or negative

      (c)  negative    

      (d)  positive and negative

Q.190     The area of the region, below the
x-axis and under the curve y = f(x) from a to b is given by:                         
12803064

      (a)      

      (b)  -

      (c)  -

      (d)  None of these

Q.191     The order of a differential equation
y
+ 2x = 0 is:                                   12803065

      (a)  0                     

      (b)  1

      (c)  2                     

      (d)  None of these

Q.192     The general solution of differential equation of order n contains n arbitrary constants, which can be determined by
--------------- initial value conditions.
12803066

      (a)  0                      (b)  1

      (c)  2                      (d)  n

Q.193     The order of a differential equation
x
+ - 2x = 0 is  :                       12803067

      (a)  0                      (b)  1

      (c)  2                      (d)  None of these

Q.194     The arbitrary constants involving in the solution of differential equations can be determined by the given conditions. Such conditions are called ---------- condition.

      (a)  initial values               12803068

      (b)  general

      (c)  boundary values         

      (d)  None of these

Q.195     For  12803069

(Board 2014)

      (a)             (b) 

      (c)    (d) 

Q.196                                            12803070

(Board 2014)

      (a)           (b) 

      (c)         (d) 

Q.197                                      12803071

(Board 2014)

      (a)           (b) 

      (c)           (d) 

 

Q.198                                           12803072

(Board 2014)

      (a)     

      (b) 

      (c)          

      (d) 

 

Q.199     is equal to:                12803073

(Board 2014)

      (a) 

      (b) 

      (c)    

      (d)  

Q.200     Anti derivative of cot x is equal to:           

(Board 2014) 12803074

      (a)                   (b) 

      (c)     (d)   

Q.201     equals:             12803075    

(Board 2013, 14)

      (a)                    (b) 

      (c)                       (d) 

Q.202     equals:                          12803076    

4.                                                                                          (Board 2014,15) 

      (a)      (b) 

      (c)                    (d)

Q.203     Solution of  is equal to:                                                             (Board 2014)        12803077  

      (a)  x.y = Constant   

      (b)  Constant

      (c)  constant                     

      (d)   constant

Q.204                                            12803078  

      (a)                                 (b) 

      (c)                                 (d) 

Q.205     Solution of differential equation, is                      (Board 2015)   12803079  

      (a)  cex                               (b)      ce–x              

      (c)       ex               (d)   e–x

Q.206     The integration is the reverse process             of :                         (Board 2015)   12803080

      (a)   Induction      

      (b)   Differentiation                      

      (c)    Tabulation                

      (d)    Sublimation

Q.207     is equal to:                                               

                        (Board 2015)   12803081  

      (a) 4                        (b)    –4                  

      (c)                                     (d)    

Q.208                                 

                                                12803082  

      (a) 36                                 (b)   42                        

      (c)  48                                (d)  12

Q.209          (Board 2015)   12803083  

      (a)                 (b)                  

      (c)                    (d)  

Q.210      is equal to:

                        (Board 2015)   12803084  

      (a)   tan–1x                         (b)  tan–1 x2             

      (c)    cot–1 x                       (d)   cot–1 x2   

Q.211     equals:

                        (Board 2015)   12803085  

      (a)    e2x sin x        (b)  e2x cos x            

      (c)    –e2x sin x            (d)    –e2x cos x

Q.212      is equal to:

                        (Board 2015)   12803086  

      (a)  1                      (b)  4                        

      (c)  14                            (d) 41

 


 

Short Answer Questions

5.        


Q.1             Using differentials find when
- ln x = ln c                                      12803087

Q.2             Use differentials, find the approximate the value of sin 46°. 12803088

(Board 2012)

Q.3             Use differentials to approximate the value of .                                       12803089

Q.4             Define differential coefficient. 12803090

Q.5             Find dy and dy of the function defined as f(x) = x, when x = 2 and
dx = 0.01          
(Board 2005) 12803091

Q.6             The side of a cube is measured to 20 cm with a maximum error of 0.12 cm in its measurement. Find the maximum error in the calculated volume of the cube. 12803092

Q.7             Use differentials to approximate the value of                                       12803093

Q.8             Find dy and dy : y = when x changes from 4 to 4.41. (Board 2005)       

6.       12803094

Q.9             Find dy and dy in y = x2 -1 when x changes from 3 to 3.02. (Board 2011) 12803095

Q.10         Use differentials to approximate the values of                                       12803096

Q.11         Use differentials to approximate the value of cos 29°                                   12803097

Q.12         Use differentials to approximate the value of sin 61°                                   12803098

Q.13         Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02.    12803099

(Board  2011)

Q.14         Find the approximate increase in the area of a circular disc if its diameter is increased from 44 cm to 44.4.  (Board 2005)

12803100

Q.15         What do you mean by integration?

12803101

Q.16         Define indefinite integral.      12803102

Q.17         Why we add the constant of integration in indefinite integrals?      12803103

Q.18         Find                          12803104

Q.19         Find . 12803105

Q.20         Find .        12803106

Q.21         Find .

12803107

Q.22         Find , l ¹ 0          12803108

Q.23         Find ,(ax + b ¹ 0, a ¹ 0)

12803109

Q.24         Find , (a ¹ 0) 12803110

Q.25         Find , (a ¹ 0)

12803111

Q.26         Evaluate                  12803112

Q.27         Evaluate               12803113

Ans.    = + c.

Q.28         Find .            12803114

Q.29         Find ,(a > 0, a ¹ 1, 0)

12803115

Q.30         Evaluate                     12803116

Q.31         Evaluate               12803117

Q.32         Evaluate   12803118

Q.33         Evaluate         12803119

Q.34         Evaluate   ;(at + b > 0)

Q.35         Evaluate ; (x > 0) 12803121

Q.36         Evaluate   ; (x > 0) 12803122

Q.37         Evaluate   ;(-a<x< a)

12803123

Q.38         Find . 12803124

Q.39         Find , (a ¹ 0) 12803125

Q.40         Evaluate                   12803126

Q.41         Evaluate   12803127

Q.42         Evaluate  (Board 2011)

12803128

Q.43         Evaluate 12803129

Q.44         Evaluate  ;                                             12803130

Q.45         Evaluate   12803131

Q.46         Evaluate , x > 0

12803132

Q.47         Evaluate                  12803133

Q.48         Find .                12803134

Q.49         Find .

12803135

Q.50         Find ,  (a ¹ 0)

12803136

Q.51         Evaluate          12803137

Q.52         Evaluate

7.       (Board 2012) 12803138

Q.53         Evaluate       

8.       (Board 2011) 12803139

Q.54         Evaluate    ;(a > 0 , a ¹ 1)

12803140

Q.55         Evaluate ;     

9.       (x > a or x < - a)                                 12803141

Q.56         Evaluate: (3x - 2x + 1) dx 12803142

Q.57         Evaluate: dx  (x  >  0)

12803143

Q.58         Evaluate:  x dx     (x > 0)

12803144

Q.59         Evaluate:  (2x + 3) dx        12803145

Q.60         Evaluate: dx (x > 0)

12803146

Q.61         Evaluate:    dx (x > 0)

12803147

Q.62         Evaluate:  dx     (x > 0)

12803148

Q.63         Evaluate:  dy  (y > 0)

(Board 2010)              12803149

 

Q.64         Evaluate:  dq   (q > 0)

12803150

Q.65         Evaluate:  dx   

10.   (Board 2009) 12803151

Q.66         Evaluate:  dx 12803152

Q.67         Evaluate:        12803153

Q.68         Evaluate:    dx        12803154

Q.69         Evaluate:  sin (a+b) x dx     12803155

Q.70         Evaluate:  dx     12803156

11.    (1 - cos 2 x > 0)

Q.71         Evaluate:   dx     

(Board 2010) 12803157

Q.72         Evaluate:  sinx dx 

12.   (Board 2011) 12803158

Q.73         Evaluate:  dx

12803159

Q.74         Evaluate:   dx 12803160

Q.75         Evaluate:  cos 3x sin 2x dx

(Board 2012) 12803161

Sol:      Let I = cos 3x sin 2x dx

Q.76         Evaluate:    dx   12803162

13.   (1 + cos 2x ¹ 0)

Q.77         Evaluate:  tanx dx             12803163

14.    (Board 2008, 09, 11)

Q.78         Evaluate                      12803164 

 Evaluate  x dx                     12803165

 

     

     

 

Q.79         Evaluate dx  12803166

15.   (Board 2011, 12)

Q.80         Evaluate dx

Q.81         Evaluate  dx              12803168

Q.82         Evaluate  12803169

Q.83         Evaluate  dx             12803170

16.   (Board 2008, 10  

Q.84         Evaluate   dx    12803171

Q.85         Evaluate               12803172

Q.86         Evaluate  dx

17.   (Board 2009)        12803173

Q.87         Evaluate   dq        12803174

Q.88         Evaluate   dx  12803175

(Board 2012)

 

Q.89         Evaluate  cos x dx 12803176

Q.90           dx 12803177

Q.91         Evaluate   dx            12803178

18.   (Board 2010, 11)

       

Q.92         Evaluate   dx    12803179

(Board 2009)

Q.93         Evaluate   

(Board 2012) 12803180

Q.94         Evaluate   x           12803181

Q.95         Evaluate:  tan4 x dx 12803182

Q.96         Evaluate:   sec x dx 12803183

Q.97         Evaluate: tan3 x sec x dx     12803184

Q.98         Evaluate:   dx          12803185

Q.99         Evaluate  x5 ln x dx 12803186

Q.100     Show that
= e
f(x) + c                                        12803187

Q.101     Find              12803188

Q.102     Find     (Board 2011)

12803189

Q.103     Evaluate 12803190

Q.104     Evaluate  sin x dx               12803191

Q.105     Evaluate:  x sinx dx    (Board 2012) 12803192

Q.106     Evaluate: n x dx               12803193

Q.107     Evaluate:   x.  n x dx         12803194

Q.108     Evaluate:   x3 ln x  dx         12803195

Q.109     Evaluate:   tan–1 x dx  (Board 2011)

12803196

Q.110     Evaluate: x2 sin x dx 12803197

Q.111     Evaluate:   x tan-1 x dx        12803198

Q.112     Evaluate: sin–1 x dx 12803199

 

Q.113     Evaluate:   (ln x) dx  (Board 2010)

12803200

Q.114     Evaluate:   ln (tan x) . secx dx

12803201

Q.115     Evaluate: dx               12803202

Q.116     Evaluate:  dx  

19.   (Board 2012) 12803203

Q.117     Evaluate: ex (cos x + sin x) dx

20.   12803204

Q.118     Evaluate:   dx

12803205

Q.119     Evaluate:  e2x [-sin x + 2 cos x] dx

(Board 2009, 12) 12803206        

Q.120     Evaluate ; (x > a)

(Board 2008) 12803207

Q.121     Evaluate     (Board 2011)

12803208

Q.122     Why we omit the constant of integration in definite integrals.         12803209

Q.123     Find .                          12803210

Q.124     In , what is range, lower limit and upper limit of integration. 12803211

Q.125     Evaluate                 12803212

Q.126     Evaluate

12803213

Q.127     Evaluate            12803214

Q.128     Evaluate   (Board 2012)

12803215

Q.129     Evaluate       (Board 2012)

12803216

Q.130     If = 5 and = 4, then evaluate the definite integral                         12803217

Q.131     Write down any two properties of definite integral. (Board 2010)  12803218

Q.132     Evaluate        

21.                                                   (Board 2015)          12803219

Q.133     Evaluate          12803220

Q.134     Find .                12803221

Q.135     Evaluate    (Board 2011,15)

12803222

Q.136     If = 5 and = 4 , then evaluate the definite integral -                  12803223

Q.137     Evaluate:            12803224

Q.138     Evaluate:           12803225

Q.139     Evaluate:         12803226

 

Q.140     Evaluate:

(Board 2009) 12803227

Q.141     Evaluate:     12803228

Q.142     Evaluate:      12803229

Q.143     Evaluate:     (Board 2011)

12803230

Q.144     Evaluate:            12803231

Q.145     Evaluate:

12803232

Q.146     Evaluate: 12803233

22.    (Board 2009)

Q.147     Evaluate:                  12803234

Q.148     Evaluate:

(Board 2011) 12803235

Q.149     Evaluate:                 12803236

23.   (Board 2008, 12)

Q.150     Evaluate:       12803237

(Board 2012)

Q.151     Evaluate:               12803238

24.   (Board 2012)

Q.152     Evaluate:       12803239

Q.153     Evaluate:       12803240

Q.154     Evaluate: 12803241

(Board 2007)

Q.155     Evaluate:        12803242

Q.156     Evaluate: 12803243

Q.157     Evaluate:           12803244

(Board 2010)

Q.158     Find the area bounded by the curve y=4 - x and the x-axis. (Board 2012) 12803245

Q.159     Find the area between the x-axis and the curve y = 4 - x in the first quadrant from x = 0 to x = 3.                                    12803246

Q.160     Find the area bounded by the curve  y = x + 3x and the x-axis.                12803247

(Board 2009)

Q.161     Find the area between the x-axis and the curve y = x+ 1 from x = 1 to
x = 2.               (Board 2008)             
12803248

Q.162     Find the area above the x-axis and under the curve y = 5 - x from x = -1 to x = 2.                                  (Board 2009)  12803249

 

= 15 - 3 = 12 square units

Q.163     Find the area below the curve           y = 3 and above the x-axis between
x = 1 and x = 4.                                  
12803250

Q.164     Find the area bounded by cos function from x = -   to x = .        12803251

Q.165     A find the area above the x-axis bounded by the curve y2 = 3 - x from
x = –1 to x = 2.                       
12803252

 

Q.166     Find the area between the x-axis and the curve y = 4x - x    (Board 2010) 12803253

Q.167     Find the area between the x - axis and the curve g(x) = cos x  from  x =  – p to p                         (Board 2011)  12803254

Q.168     Find the area between the x-axis and the curve y = sin 2x from x = 0 to x =

12803255

Q.169     Solve the differential equation
 x
(2y + 1) - 1 = 0              12803256

 

Q.170     Solve =                      12803257

Q.171     Solve (sin y + y cos y) dy        

25.      = [x (2 ln x + 1)] dx

12803258

Q.172     State fundamental theorem of calculus.                    (Board 2010)  12803259

Q.173     Solve the differential equation
 (x
- 1) dx + y dy = 0                           12803260

Q.174     Solve 2e tan y dx+(1-e) secy dy=0;                    12803261

Q.175     Solve = x + x - 3 , if y = 0 when x = 2.                                                  12803262

Q.176     What are initial value conditions?

26.    12803263

Q.177     Solve the differential equation
- 2y = 0   , x ¹0 , y > 0(Board 2008) 12803264

Q.178     The slope of the tangent at any point of the curve is given by = 2x - 2 , find the equation of the curve if y = 0 when x = -1.

12803265

Q.179     A particle is moving in a straight line and its velocity is given by
v = t
- 7t + 10, find s (distance) in terms of t if s = 0 when t = 0                               12803266

Q.180     Cheek that the equation written against the differential equation is its solution. x   = 1 + y, y = cx -1            12803267

Q.181     Solve the following differential equation:  = - y                          12803268

Q.182     Solve the following differential equation: y dx + x dy = 0                 12803269

Q.183     Solve the following differential equation: =                          12803270

Q.184     Solve the following differential equation:  =    ,        (y > 0)       12803271

Q.185     Solve the following differential equation:  sin y cosec x =1          12803272

Q.186     Solve the following differential equation:  x dy + y (x - 1) dx = 0     12803273

Q.187     Solve the following differential equation: × =                         12803274

Q.188     Solve the following differential equation: 2 x y = x - 1      (Board 2012)

12803275

Q.189     Solve the following differential equation: + = x                12803276

Q.190     Solve the following differential

equation: sec x tan ydx+ sec y tan x dy = 0

27.                                                   12803277

Q.191     Solve the following differential equation: 1 + cos x tan y = 0       12803278

Q.192     Solve the following differential equation: sec x + tan y = 0          12803279

Q.193     Solve the following differential equation: =

28.               (Board 2011, 12) 12803280

 

Unit

Introduction to Analytic Geometry

04

     

 

Multiple Choice Questions

 

q  Each question has four possible answers. Select the correct answer and encircle it.

 

 


Q.1       The distance between two points
P
(x, y) and P(x, y) on the
co-ordinate plane is given by:         
12804001

      (a)  +

         (b)  

         (c)  

         (d)  

Q.2       The distance of any point P (x, y) from the origin O(0, 0) is given by:      12804002

      (a)   x+ y                    (b)   x– y

         (c)              (d)  

Q.3       The mid-point of the line joining
A(x1, y1) and B(x2, y2) is:
(Board 2008) 12804003

      (a)            

         (b)  

         (c)      

         (d)  

Q.4       The co-ordinates of a point dividing the line segment joining the points
P
(x, y) and P(x, y) internally in the ratio k: k has co-ordinates:           12804004

      (a)

         (b)  

         (c)  

         (d)  

Q.5       The co-ordinates of the point which divides the join of P(x, y) and Q(x, y) externally in the ratio  m : n are given by:

12804005

         (a)     

         (b)  

         (c)  

         (d)  

Q.6       If A(x, y), B(x, y) and C(x,y) are the vertices of a triangle ABC, then
co-ordinates of its centroid are given by:

12804006

         (a)  

         (b)  

         (c)  

         (d)  

Q.7       If A (x, y), B(x, y) and C(x,y) are the vertices of a triangle ABC, then
co-ordinates of incentre are given by:
12804007

      (a)      

         (b)  

         (c)  

         (d)  

Q.8       If a pair of opposite sides of a quadrilateral are equal and parallel then it is a:                                                                    12804008

      (a) rectangle             

         (b)   rhombus

         (c)   parallelogram

         (d)  None of these.

Q.9       x-coordinate of any point on Y-axis is:

12804009

         (a)   0                     (b)   x           

         (c)   1                     (d)   y

Q.10   y-coordinate of any point on X-axis is:

12804010

         (a)   0                     (b)   x           

      (c) 1    (d)                  y

Q.11   In a plane two mutually perpendicular number lines x¢ox and y¢oy, one horizontal and the other vertical are called         :                                                        12804011

      (a) x-axis                  

      (b)      coordinate axes

      (c) y-axis                  

      (d)      None of these

Q.12   If (x, y) are the coordinate of a point P, then the second component of the ordered pair is called:                                       12804012

      (a) abscissa                (b)   ordinate

      (c) coordinate            (d)   ordered pair

Q.13   If the distance between points (a, 5) and (1, 3) is , then a =  (Board 2009)

      (a) 4    (b)                  2 12804013

      (c) (d)                1

Q.14   A parallelogram is a rhombus if and only if its diagonals are:                                           12804014

      (a) parallel                

         (b)   perpendicular

         (c)   equal             

         (d)   None of these.

Q.15   The vertical line y¢oy is called: 12804015

      (a) x-axis                   (b)   y-axis

         (c)   abscissa          (d)   ordinate

Q.16   The distance between the points
(1, 2), (2, 1), then:    (Board 2009)   
12804016

(a)  1      (b)                 

         (c)   2                     (d)  

Q.17   If the directed distances AP and PB have the same signs, then their ratio is positive and P is said to divide AB: 12804017

      (a) internally              (b)  may be divide

      (c) externally             (d)  None of these

Q.18   The centroid of a triangle is a point that divides each median in the ratio: 12804018

      (a) 2 : 1 (b)                 2 : 3

         (c)   1 : 3                (d)   4 : 3

Q.19   The intersection of any two sides of a triangle gives:                                                           12804019

      (a) median                  

      (b)      altitude        

      (c) vertex                  

         (d)   None of these

Q.20   If (x, y) are the coordinates of a point, then the first component of the ordered pair is called:                                            12804020

      (a) abscissa               

      (b)  ordinate

      (c) coordinate axes 

         (d)   None of these

Q.21   The coordinate axes divide the plane into ------------ equal parts.                          12804021

      (a) 1    (b)                  2

         (c)   3                     (d)   4

Q.22   If the directed distances AP and PB have the opposite signs, i.e; p is beyond AB, then their ratio is negative and P is said to divide AB:                                                            12804022

      (a) internally              (b)  may be divide

      (c) externally             (d) None of these

Q.23   The ratio in which the line segments joining (2, 3) and (4, 1) is divided by the line joining (1, 3) and (4, 3) is:                         12804023

         (a)   2 : 1                (b)   3 : 1      

         (c)   1 : 2                (d)   None of these.

Q.24   Inclination of X-axis or of any line parallel to X-axis is:                                                     12804024

      (a) zero (b)  p

         (c)                       (d)  undefined.

Q.25   Inclination of Y-axis or of any line parallel to Y-axis is:                                                     12804025

      (a) p    (b)  zero

         (c)                       (d)  undefined.

Q.26   What is the nature of the line whose equation is A x + B y + C = 0 when A = 0, B and C ¹ 0:                                           12804026

      (a) line parallel to x-axis 

      (b)      line parallel to y-axis

      (c) line passing through the origin

      (d)      both (a) and (b)

Q.27   What is the nature of the line whose equation is A x + B y + C = 0 when B = 0, A and C ¹ 0:                                           12804027

      (a) line parallel to x-axis 

      (b)      line parallel to y-axis

      (c) line passing through the origin

      (d)      both (a) and (b)

Q.28   What is the nature of the line whose equation is A x + B y + C = 0 when C = 0, A and B ¹ 0     :                                          12804028

      (a) line parallel to x-axis 

      (b)      line parallel to y-axis

      (c) line passing through the origin

      (d)      both (a) and (b)

Q.29   What is the nature of the line whose equation is A x + B y + C = 0, when A ¹ 0, B ¹ 0, C ¹ 0    :                  12804029

      (a) line parallel to x-axis 

      (b)      line parallel to y-axis

      (c) inclined               

      (d)      both (a) and (b)

Q.30   If the points (a, 0), (0, b) and (x, y) are collinear, then:                                                       12804030

      (a) + = 0     (b)     + = 1

         (c)   + = 1    

         (d)   None of these.

Q.31   Equation of a line parallel to x-axis is:                                                (Board 2007)                                 12804031

      (a) x = 0                    (b)   x = y

      (c) y = a                     (d)   x = a

Q.32   The angle a ÃŽ [0° , 180°[ measured counter clock wise from positive x-axis to a non horizontal straight line l is:            12804032

      (a) slope of l             

      (b)      inclination of l

      (c) gradient of l    

      (d)      None of these

Q.33   If the line l is parallel to x-axis, then the slope of l is:                                                          12804033

      (a) 0    (b)                  1

      (c) 2    (d)                  undefined

Q.34   The line l is horizontal if and only if slope is equal to:                                                        12804034

      (a) 0    (b)  1

      (c) 2    (d)  undefined

Q.35   The symbol ^ is used for:       12804035

(a)  parallel lines

(b)  perpendicular lines

(c)  non-parallel lines     

(d) None of these

Q.36   The symbol | | is used for:       12804036

(a)  parallel lines

(b)  perpendicular lines

(c)  non-parallel lines     

(d) None of these

Q.37   The symbol   is used for:       12804037

(a)  parallel lines         

(b)  non-parallel lines

(c)  perpendicular lines  

(d) coplanar lines

Q.38   The lines lying on the same plane are called :                  (Board 2005)                               12804038

      (a) collinear lines

      (b)      coplanar lines

      (c) concurrent            (d)   parallel lines

Q.39   The two lines l and l with respective slopes m and m are parallel if and only if:

12804039

      (a) m ¹ m       (b)     m´ m = - 1

      (c) m = m       (d)      m´ m ¹ - 1

Q.40   The line x = a is on the right of
y-axis, if:                                           
12804040

      (a) a > 0                     (b)  a < 0

      (c) a = 0                     (d)  a ¹ 0

Q.41   y = mx + c is the equation of straight line in:                                                                                12804041                  

(a)  slope-intercept form

(b)  two points form    

(c)  point slope form      

(d) intercepts form

Q.42   x = x + r cos q , y = y + r sin q is called the equation of straight line in: 12804042

      (a) point-slope form    

      (b)      two points form    

      (c) normal form        

      (d)      sysmmetric form

Q.43   The perpendicular distance of the line 3x  + 4y + 10 = 0 from the origin is: 12804043

(Board 2005)

(a)  0      (b)                  1

(c)  2      (d)                  3

Q.44   Intercepts form of equation of line is:                                                 (Board 2005, 09) 12804044

(a)                (b)  

(c)                (d)  

Q.45   y - y = m (x - x) is the equation of straight line in:                                                          12804045

(a)  slope-intercept form

(b)  point-slope form  

(c)  normal form            

(d) intercepts form

Q.46   If a is the inclination of a non-vertical line l, then it slope or gradient is: 12804046

(Board 2005)

      (a) sin a                    (b)   cos a

      (c) tan a                    (d)   cot a

Q.47   If the inclination of a line lies between ]90° , 180°[ , then the slope of line is: 12804047

      (a) positive                (b)  negative

      (c) zero (d)  undefined

Q.48   y = - 2 is a line:                        12804048

      (a) parallel to x-axis    

      (b)      parallel to y-axis

      (c) perpendicular to x-axis

      (d)      None of these

Q.49   The line y = a is above the x-axis, if:

12804049

      (a) a > 0                     (b)   a < 0     

      (c) a ¹ 0                     (d)   a = 0

Q.50   If the lines  and are perpendicular, then:

12804050

(a)  a a – b b = 0          

(b)  a a + b b = 0

(c)  a b - a2 b1 = 0   

(d) a b + a2 b1 = 0

Q.51    Two lines  and  are parallel if:(Board 2005)

12804051

(a)                  (b)    

(c)                  (d)  

Q.52   If the inclination of the line l lies between ]0°,90°[, then the slope of l is: 12804052

      (a) positive                (b)   undefined

      (c) negative               (d)   None of these

Q.53   The points A , B and C are collinear, then slope of  and slope of  are: 12804053

      (a) equal                    (b)   opposite in sign

      (c)   different            (d)   None of these

Q.54   x = 4 is a line:                           12804054

      (a) parallel to x-axis 

      (b)      parallel to y-axis

      (c) ^ to y-axis          

      (d)      None of these

Q.55   If a = 0, then the line ax + by + c = 0 is parallel to:        (Board 2008)        12804055

      (a) y-axis                   (b)   x-axis

      (c) along y-axis         (d)   none of these

Q.56   y - y = (x - x) is the equation of straight line in:                                                 12804056

      (a) slope-intercept form   

      (b)      two points form    

      (c) symmetric form     

      (d)      two intercepts form

Q.57   The distance d from the point            P(x , y) to the line ax + by + c = 0 is given by:                                                               12804057

         (a)   d =   

         (b)   d = 

         (c)   d =   

         (d)   d = 

Q.58   If the line l is parallel to y-axis, then the slope of l is ------------.                              12804058

      (a) 0°   (b)                  90° 

      (c) 180°                     (d)   undefined

Q.59   The two lines l and l with respective slopes m and m are perpendicular if and only if:    (Board 2006)                                 12804059

      (a) m = m               (b)   m´m = - 1

      (c) m ¹ m               (d)   m´m ¹ - 1

Q.60   The line y = a is below the x-axis, if:

12804060

      (a) a > 0                     (b)   a < 0     

      (c) a ¹ 0                     (d)   a = 0

Q.61   The slope of line y = x + is equal to:                                                                                                      12804061

      (a) - (b)                      

      (c) - (d)               

Q.62   If a straight line is perpendicular to
y-axis, then its slope is:   (Board 2011)

      12804062

      (a) 1    (b)   –1

      (c) 0    (d)   undefined

Q.63   The line l is vertical if and only if slope is:                                                                            12804063

      (a) 0    (b)  1

      (c) 2    (d)  undefined

Q.64   x = c is a line:                            12804064

      (a)     perpendicular to x-axis       

      (b)    parallel to x-axis

      (c)    perpendicular to y-axis        

      (d)         None of these    

Q.65   y = 2x + 3 is the:                       12804065

      (a) slope-intercept form   

      (b)      two points form    

      (c) point slope form    

      (d)      intercepts form

Q.66   The equation of a line which passes the point (3, 4) and whose intercepts on the axes are equal in magnitude but opposite in sign  is:                                                                          12804066

         (a)   x + y - 1 = 0 (b)   x - y - 1 = 0

         (c)   y - x + 1 = 0 (d)   None of these.

Q.67   The equation of a straight line passing through the origin and parallel to the line 3x - 2y + 1 = 0 is:                                       12804067

         (a)   y = x           (b)   y = x

         (c)   x = y           (d)   x = – y

Q.68   The equation to the straight line which passes through the point (2, 9) and makes an angle of 45° with x- axis is: 12804068

         (a)   x + y + 7 = 0  (b)   x - y + 7 = 0

         (c)   y - x + 7 = 0  (d)   None of these

Q.69   The equation of a straight line which parallel  to the line 3x - 2y + 5 = 0 and passes through (2,- 1) is:             12804069

         (a)   3x + 2y - 8 = 0

         (b)   3x - 2y + 8 = 0

         (c)   3x - 2y - 8 = 0

         (d)   3x + 2y + 8 = 0

Q.70   Infinite number of lines can pass through:                                                                           12804070

      (a) one point             

      (b)      two points

(c)     three points      

      (d)      four points.

Q.71   Distance of the point (-3, 7) from
x-axis is:                                            
12804071

      (a) 3   (b)                  –3

         (c)   7                     (d)   10

Q.72   Distance of the point (-2, 3) from
y-axis is:                                            
12804072

      (a) –2 (b)                 2

         (c)   3                     (d)  1

Q.73   If matrix of the coefficients of the lines ax+by+c=0, ax + by+c2 = 0 and
a
x + by + c= 0 is singular, then lines are:

12804073

      (a) collinear              

      (b)  coplanar

      (c) concurrent           

         (d)   None of these

Q.74   General form of equation of line is:

      (Board 2006)              12804074

         (a)   ax - by + c = 0

         (b)   ax + by - c = 0

         (c)   ax + by + c = 0

         (d)   ax - by - c = 0

Q.75   A quadrilateral having two parallels and two non-parallel sides is called: 12804075

      (a)  trapezium             (b)  rectangle

      (c)  rhombus               (d) None of these

Q.76   Two non-parallel lines in a plane intersect each other at    :                                               12804076

      (a) one and only one point

      (b)      more than one point

      (c) (0, 0)                   

      (d)      (1, 1)

Q.77   If the points A, B and C are collinear, then area of the DABC will be:     12804077

      (a) 0    (b)                  2

      (c) 1    (d)                  None of these

Q.78   The angle between the lines   and  is:(Board 2009) 12804078

      (a) 90o (b)                  60o

      (c) 45o (d)                  30o

Q.79   The angle between the lines  and  is:    (Board 2009)           12804079

      (a) (b)                

         (c)                   (d)  

Q.80   If P(x , y) , Q(x , y) and
R(x
, y) are the vertices of the triangle, then area of the triangle is:                            12804080

      (a)    (b)  

      (c)      (d)   None of these

Q.81   The area of the triangle with vertices at the points (a, b + c), (b, c + a), (c, a + b) is:                                                                  12804081

         (a)   0                     (b)   a +  b + c

         (c)   ab + bc + ca   (d)   None of these

Q.82    has matrix form as:

         (Board 2007)           12804082

         (a)  

         (b)  

         (c)  

         (d)  

Q.83   Three nonparallel lines l: ax + by
+ c
= 0, l: ax + by + c= 0 and l: ax + by + c= 0 are concurrent if and only if:

12804083

         (a)   ¹ 0           

         (b)   =0

         (c)   = 1 

         (d)   =0

Q.84   The pair of lines of homogeneous second-degree equation ax+2hxy+by = 0 are real and coincident, if:             12804084

      (a) h < ab                 (b)  h > ab 

         (c)   h = ab           (d)  None of these

Q.85   Two lines of homogeneous second degree equation ax+2hxy + by = 0 are parallel if:                                12804085

      (a) h = ab                

       (b)     h > ab          

      (c) h < ab                  

      (d)      None of these

Q.86   A pair of lines of homogeneous second degree equation ax + 2hxy + by2 = 0 are orthogonal, if: (Board 2005, 11)           12804086

      (a) a - b = 0              (b)  a + b = 0

      (c) a + b > 0              (d)  a - b < 0

Q.87   The pair of lines of homogeneous second-degree equation ax +2hxy+by =0 are imaginary, if:                                       12804087

      (a) h = ab                 (b)   h > ab 

      (c) h < ab                 (d)   None of these

Q.88   The pair of lines of homogeneous second-degree equation ax+2hxy+by = 0 are real and distinct, if:    (Board 2007, 11)

12804088

      (a) h < ab                 (b)   h > ab 

      (c) h = ab                 (d)   None of these

Q.89   If q is measure of the angle between the pair of lines of homogeneous second degree equation ax + 2hxy + by = 0 then:                     (Board 2009)                   12804089

         (a)  

         (b)  

         (c)  

         (d)  

Q.90     Joint equation of y + 2x = 0,
y
- 3x = 0 is:        (Board 2007)        12804090

         (a)                         (b)       

         (c)  

         (d)  

Q.91   For any point (x, y) on x-axis:       

(Board 2014)12804091

         (a)     y = 0            

         (b)   y = – 1

         (c)     y = 1            

         (d)   y = 2

Q.92   The point of concurrency of medians of triangle is called:        (Board 2014)12804092

         (a)     In-centre          (b)  Centroid

         (c)     Circumcentre   (d) Orthocentre

Q.93   Slope of line perpendicular to line 2x– 3y + 1 = 0 is equal to:        (Board 2014)12804093

         (a)                     

         (b)  

         (c)                        

         (d)  

Q.94   X-co-ordinate of centroid of triangle ABC with A(–2, 3); B(–4, 1) ; C(3,5) equals:

        (Board 2014)12804094

         (a)     – 1                   (b)  1

         (c)     3                      (d) – 3

Q.95   The ratio in which y-axis divides the line joining (2, –3) and (–5, 6) is:

        (Board 2013)12804095

         (a)     2 : 3                 (b)  2 : 5

         (c)     1 : 2                 (d) 3 : 5

Q.96   Let and then is homogenous equation of degree:

        (Board 2015)12804096

         (a)     1                      (b)  2

         (c)     0                      (d) n

Q.97   The slope of tangent line to  at  is:           (Board 2015)12804097

         (a)     m                     (b) 

         (c)                        (d)

Q.98   The distance of point P (6 , –1) from the line 6x – 4y + 9 =0 is:

                                          (Board 2015)12804097

      (a)  49                           (b)                   

       (c)                        (d)    

Q.99   The point of intersection of medians of a triangle is called:     (Board 2015)12804097

 (a) Centroid                       (b)     Orthocenter         

 (c)   Circumcentre        (d)  Incentre

Q.100  Slop intercept form of line equals:

                     (Board 2015)12804097

     (a) y – y1 = m(x–x1)         (b)           

(c)  x cosq + y sin q = p    (d)  y = mx + c

Q.101  Point of intersection of lines  x – 2y +           1 = 0 and 2x – y + 2 = 0 equals:

                                          (Board 2015)12804097

      (a)  (1,0)                            (b)  (0,  1)               

      (c) (–1, 0)                          (d)  (0, –1)

 



Short Answer Questions

 


Q.1       What is analytic geometry?    12804098

Q.2       Define coordinate axes.           12804099

Q.3       Define centroid of a triangle. 12804100

Q.4       Define ortho-centre of a triangle. 12804101

Q.5       Define circum-centre of a triangle.

12804102

Q.6       Define in-centre of a triangle. 12804103

Q.7       What do you mean by the locus of a point?                                                  12804104

Q.8       What is abscissa?                     12804105

Q.9       What is ordinate?                    12804106

Q.10   What are the coordinates of the
in-centre of a triangle whose vertices are A(x1, y1), B(x2, y2), C(x3, y3).   (Board 2009)

12804107

Q.11   Define the external division of the line segment joining the two points in plane.                            (Board 2010) 12804108

Q.12   Show that the points A(-1,2),
B(7, 5) and C(2 ,
-6) are vertices of a right triangle.                                             12804109

Q.13   Find the coordinates of the point that divides the join of A(-6 , 3) and           B(5 , -2) internally in the ratio 2 : 3. 12804110

Q.14   Show that the points A(-3,6),
B(3, 2) and C(6,0) are collinear.     
12804111

(Board 2007)

Q.15   Find the coordinates of the point that divides the join of A(-6 , 3) and
B(5,
-2) externally in the ratio 2 : 3. 12804112

Q.16   The point C(-5 , 3) is the centre of a circle and P(7 , -2) lies on the circle. What is the radius of the circle?             12804113

Q.17   Find the coordinates of a point that divides the join of A (-6, 3) and B(5,-2) in the ratio 2 : 3.     (Board 2008)              12804114

 

Q.18   Find the distance between the two given points and mid-point of the line segment joining the two points A, B    (Board 2006) 12804115

Q.19   Show that the points   and are vertices of a right triangle.                         12804116

Q.20   Show that the points  and are vertices of an isosceles triangle.                        12804117

Q.21   Find h such that the points   and are vertices of a right triangle with right angle at the vertex A.                          12804118

Q.22   Find h such that  and are collinear.(Board 2008) 12804119

Q.23   The points and B(5, – 4) are ends of a diameter of a circle. Find the centre and radius of the circle.

(Board 2009) 12804120

Q.24   Find h such that the points A(h,1) , B(2, 7) and C (– 6, – 7)  are vertices of a right triangle with right angle at the vertex A.                                                            12804121

Q.25   Find the points trisecting join of
A(–1, 4) and B(6, 2).                         
12804122

Q.26   Find the point three-fifths of the way along the line segment from
A(– 5, 8) to B(5, 3).    (Board 2008)
12804123

  

Q.27   Define translation of axes.

(Board 2009, 10) 12804124

Q.28   The xy-coordinate axes are translated through the point O¢ (4, 6). The coordinates of the point P are
(2,
-3) referred to new axes. Find the coordinates of P referred to the original axes.                                       12804125

Q.29   The coordinates of a point P are        (-6 , 9). The axes are translated through the point O¢ (-3 , 2). Find the coordinates of P referred to the new axes.                      12804126

Q.30   The two points P(3, 2) and O¢ (1, 3) are given in xy-coordinate system. Find the XY-coordinates of P referred to the translated axes O¢X and O¢Y.    12804127

Q.31   The xy-coordinate axes are translated through the point O¢(3, 4). The coordinates of P(8, 10) are given in the
XY-coordinate system. Find the coordinates of P in xy
-coordinate.                  12804128

Q.32   The xy-coordinates axes are rotated about the origin through the indicated angle. The new axes are OX and OY. Find the XY-coordinates of the point P with the given xy-coordinates.                12804129

      P(5, 3) ; q = 45o

Q.33   The xy-coordinates axes are rotated about the origin through the indicated angle. The new axes are OX and OY. Find the XY-coordinates of the point P with the given xy-coordinates.               

P(3, - 7) ; q = 30°    (Board 2011)      12804130

Q.34   What is slope or gradient of a line?

12804131

Q.35   Define two point form of a line.

12804132

Q.36   Find the slope and inclination of the x-axis.                                                 12804133

Q.37   Find the slope and inclination of the y-axis                                                  12804134

Q.38   Find the slope and inclination of the line bisecting the first and third quadrant.

12804135

Q.39   Find the slope and inclination of the line bisecting the 2nd and fourth quadrant.

12804136

Q.40   Find slope of line through the points (- 2, 1) and (6, - 4).                    12804137

Q.41   Define slope-intercept form of a line.

12804138

Q.42   Define point slope form of a line.

12804139

Q.43   What is inclination of a line? 12804140

(Board 2008)

Q.44   What are conditions for two lines to be coincident, parallel, perpendicular or intersecting?                             12804141

Q.45   What are the conditions for the collinearity of three points.                      12804142

Q.46   Find the slope and inclination of the line through the points(3, – 4),(– 2, 5) 12804143

Q.47   By means of slopes, show that the following points lie on a line:   

      (– 1, – 3) ; (1, 5) ; (2, 9)    12804144

Q.48   Show that the triangle with vertices A(1,1), B(4,5) and C(12,-1) is a right triangle.                                12804145

Q.49   Find the equation of the straight line if its slope is 2 and y intercept is 5. 12804146

(Board 2006)

Q.50   Prove that equation of a non-vertical straight line l with slope m and passing through a point Q(x , y) is given by y - y = m(x - x)                                       12804147

Q.51   Equation of a line whose non-zero x and y intercepts are a and b respectively, is given by    + = 1        (Board 2011)    12804148

Q.52   Prove that equation of a non-vertical straight line with slope m and
y-intercept c is given by y = mx + c
12804149

 

Q.53   Write down an equation of the line which cuts x-axis at (2, 0) and y-axis at           0, - 4).                                              12804150

Q.54   Find the distance between the parallel lines 2x+y+2=0 and 6x+3y - 8=0.           12804151

(Board 2005)

Q.55   Find the distance between the parallel lines l: 2x - 5y + 13 = 0  and

29.   l- 2x + 5y  - 6 = 0              12804152

Q.56   Find the distance from the point
P(6,
-1) to the line 6x - 4y + 9 = 0 12804153

Q.57   Find the slope of the line through the points (-2, 4) and (5, -11).   (Board 2009)

12804154

Q.58   Find an equation of the line through the points P(2, 3) which forms an isosceles triangle with the coordinate axes in the first quadrant                                              12804155

Q.59   Find the slope and angle of inclination of the line joining the points.
( – 2, 4), (5, 11)                                  
12804156

Q.60   Find the slope and angle of inclination of the line joining the points.
(4, 6), (4, 8)                                        
12804157

Q.61   Find k so that the line joining           A(7, 3) ; B(k, – 6) and the line joining
C( – 4, 5); D ( – 6, 4) are parallel.   
12804158

(Board 2009)

Q.62   Find k so that  is perpendicular to , where A(7, 3) B(k,-6), C(–4,5),
D(–6,4) are given vertices.(Board 2008)

12804159

 

 

Q.63   Find k so that the line joining A(7, 3);

B(k, – 6) and the line joining C( – 4, 5) ;

D ( – 6, 4) are perpendicular.                            12804160

Q.64   Using slope, show that the triangle with vertices at A(6, 1), B(2, 7) and              C( – 6, – 7) is a right triangle.          12804161

 

Q.65   Show that the points A(-3, 6),        B(3 , 2) and C(6 , 0) are collinear.  12804162

Q.66   Find the equation of the straight line if it is perpendicular to line with slope
-6 and y intercept is                       12804163

Q.67   Define intercept form of a line.

12804164

Q.68   Find an equation of  the horizontal line through .                             12804165

Q.69   Find an equation of the vertical line through                                    12804166

Q.70   Find an equation of the line bisecting the first and third quadrants.        12804167

Q.71   Find an equation of the line bisecting the second and fourth quadrants.  12804168

Q.72   Find an equation of the line through

A(– 6, 5) having slope 7                    12804169

Q.73   Find an equation of the line through (8, – 3) having slope 0                       12804170

Q.74   Find an equation of the line through (– 8, 5) having slope undefined.      12804171

Q.75   Find the equation of the horizontal line through (7, -9). (Board 2007, 10) 12804172

Q.76   Find an equation of the line
y - intercept – 7 and slope – 5.        
12804173

Q.77   Find an equation of the line having x-intercept – 9 and slope 4.                12804174

Q.78   Find an equation of the line having
x-intercept – 3 and y-intercept 4.   
12804175

Q.79   Find an equation of the perpendicular bisector joining the points
A(3, 5) and B(9, 8).   
(Board 2010)   12804176

 

Q.80   Find an equation of the line through (–4, –6) and perpendicular to a line having slope – .                         (Board 2015)   12804177

Q.81   The length of perpendicular from the origin to the line is 5 units and the angle of inclination of the perpendicular is 120°. Find the slope and y-intercept of the line.

(Board 2015)  12804178

Q.82   Find an equation of the line through (11, –5) and parallel to a line with
slope – 24.                                         
12804179

Q.83   Convert the equation 15y–8x+3=0 into:                      (Board 2009)  12804180         

(i)   slope intercept form.

(ii)  two intercepts form.

(iii)       normal form.

Q.84   Transform the equation:       
5x
- 12y+39 = 0 into two-intercept form.

12804181

Q.85   Transform the equation

5x-12y + 39 = 0 into Point-slope form.

      12804182

Q.86   Transform the equation:

2x - 4y + 11 = 0 into Slope-intercept form.

(Board 2009)   12804183

Q.87   Find whether two lines joining
A(1,
-2), B(2, 4) and C(4, 1), D(-8, 2) are:

(i)   Parallel                             12804184

(ii)  Perpendicular

(iii)       None.                              (Board 2006)

Q.88   Two pairs of points are given. Find whether the two lines determined by these points are (i) parallel, (ii) perpendicular (iii) none.                                                 12804185

      (1, – 2) , (2, 4) and (4, 1), ( – 8, 2)

Q.89   Check whether the two lines are  (i) parallel (ii) perpendicular                

      3 y = 2x + 5 ; 3x + 2y – 8 = 0  12804186

Q.90   Check whether the two lines are  (i) parallel (ii) perpendicular                 12804187

      4 y + 2x – 1 = 0, x – 2y – 7 = 0

Q.91   Check whether the two lines are          (i) parallel (ii) perpendicular         12804188

      4 x – y + 2 = 0, 12x – 3y + 1 = 0

Q.92   Check whether the two lines are

(i) parallel (ii) perpendicular           12804189

     12x + 35 y – 7 = 0, 105x – 36y + 11 = 0

Q.93   Find an equation of the line through (–4, 7) and parallel to the 2x – 7y + 4 = 0

12804190

Q.94   Find an equation of the line through (5, – 8) and perpendicular to the join of
A (– 15, – 8), B(10, 7)                       
12804191

Q.95   Find whether the given point lies above or below the given line.   12804192

      (5, 8);        2x – 3y + 6 = 0                       

Q.96   Check whether the given points are on the same or opposite sides of the given line. (0, 0) and (– 4, 7); 5x–7y+70= 0 12804193

Q.97   Check whether the point (- 2, 4) lies above or below the line 4x+ 5y - 3 = 0

                                                (Board 2015)  12804194

Q.98   Check whether the given points are on the same or opposite sides of the given line. (2, 3) and (– 2, 3) ; 3x–5y+8 = 0 12804195

Q.99   Check whether the origin and the point P (5, - 8) lie on the same side or on the opposite sides of the line 3x+7y+15= 0.

12804196

Q.100    Find the area of the triangular region whose vertices are A(5, 3),
B(
-2, 2), C(4, 2).        (Board 2008)  12804197

Q.101    Find the area of the region bounded by the triangle with vertices
(a, b + c), (a, b
- c) and (- a, c).       12804198

(Board 2009)

Q.102    By considering the area of the region bounded by the triangle with vertices
A(1, 4), B(2,
- 3) and C (3, - 10). Check whether the three points are collinear or not.                                               12804199

Q.103    Define an angle from one line to other line.                                               12804200

Q.104    Find the angle from the line with slope to the line with slope .       12804201

(Board 2010)

Q.105    Check whether the following lines are concurrent or not. If concurrent, find the point of concurrency.              12804202

30.   3x - 4y - 3 = 0   5x + 12y + 1 = 0

31.   32x + 4y - 17 = 0

Q.106    What is family of lines?        12804203

Q.107    Write the equation of the line through the point of intersection of the lines 3x – 4y – 10 = 0 and x + 2y – 10 = 0 in general form.                          (Board 2006) 12804204

Q.108    Check whether the lines
4x
-3y - 8 = 0, 3x -4y-6= 0 and x-y-2 = 0 are concurrent.         (Board 2011)  12804205

Q.109    Find the point of intersection of the lines.                                                  12804206

      3x + y + 12 = 0 and x + 2y – 1 = 0

Q.110    Find the point of intersection of the lines.  (Board 2007, 09)       12804207

      x + 4y – 12 = 0 and x – 3y + 3 = 0

Q.111    Find the point of intersection of the lines 5x + 7y = 35 and x - 7y = 21     12804208

Q.112    Determine the value of p such that the lines 2x - 3y - 1 = 0, 3x - y - 5 = 0 and
3x + py + 8 = 0 meet a point.           
12804209

Q.113    Check whether the lines
4x–3y–8 = 0, 3x – 4y – 6 = 0, x – y – 2 = 0 are concurrent. If so, find the point where they meet.                  (Board 2008)   
12804210

Q.114    Find the angle measured from the line L to the line L where   L :  joining
(2, 7) and (7, 10) L
:  joining (1, 1) and
( – 5, 3)                                               
12804211

Q.115    Find the angle measured from the line L to the line L where:     (Board 2010)

L :  joining (1, – 7) and (6, – 4)      

L :  joining ( – 1, 2) and ( – 6, – 1)   12804212

Q.116    Find the interior angle A of the triangle with vertices A(-2,11), B(-6-3), C(4, -9).     (Board 2008, 09)         12804213

Q.117    Express the given system of equations in matrix form. Find whether the lines are concurrent.                        12804214

3x - 4 y -2 = 0, x+2y - 4= 0, 3x -2y+5 = 0

Q.118    What is the area of trapezoidal region?                                          12804215

Q.119    Define an angle between the pair of lines of homogeneous second degree equation.                             12804216

Q.120    Define Trapezium.(Board 2009)

12804217

Q.121    Find a joint equation of the straight lines through the origin perpendicular to the lines represented by x+  xy - 6y = 0

(Board 2015)    12804218

Q.122    Define normal form of a line. 12804219

Q.123    Find measure of the angle between the lines represented by x - xy - 6y = 0

12804220

Q.124    In the triangle A(8, 6), B( – 4, 2),         C(–2, – 6), find the slope of each side of the triangle.                            12804221

Q.125    Find the condition that the lines
y = m1x + c1 ; y = m2 x+c2 and y = m3 x+ c3 are concurrent.   
(Board 2011, 15)        12804222

Q.126    Find an equation of each of the lines represented by 12804223

Q.127    Find measure of the angle between the lines represented by  

12804224

Q.128    Find a joint equation of the straight lines through the origin perpendicular to the lines represented by:       12804225

                                 (1)

Q.129    Find an equation of each of the lines represented by                               

20x+ 17xy - 24y = 0                     12804226

Q.130    Find the lines represented by:

 Also find the angle between the lines.          (Board 2010)  12804227

 

 

Unit

Linear Inequalities & Linear
Programming

05

     

 

Multiple Choice Questions

 

q  Each question has four possible answers. Select the correct answer and encircle it.

 


Q.213        In-equalities are expressed by the symbols:                                      12805001

(a)                    =, <, >, £, ³

(b)                    ¹, <, >, £, ³

(c)  <, >, £, ³              

(d) None of these

Q.214        ax £ b is an inequality of:       12805002

(a)                    one variable          

(b)                    three variable

(c)                    two variable          

(d)                   None of these

Q.215        ax + by ³ c is an inequality of: 12805003

(a)                    one variable          

(b)                    three variable

(c)                    two variable          

(d)                   None of these

Q.216        Non-vertical lines divide the plane into ------------ half plane.                       12805004

(a)                    upper and lower

(b)                    many

(c)  left and right        

(d) None of these

Q.217        There are -------------- ordered pairs that satisfy the inequality ax + by > c. 12805005

(a)                    finitely many        

(b)    two

(c)  infinitely many     

(d) None of these

Q.218        The order (or sense) of an inequality is changed by -------------, it each side by a negative constant.                                                            12805006

(a)                    adding       (b)        subtracting

(c)                    dividing     (d)       None of these

Q.219        The graph of linear equation of the form ax + by = c is a ------------, where a, b and c are constants and a, b are not both zero.                                                            12805007

(a)                    curve         (b)    circle

(c)  straight line    

(d) None of these

Q.220        The graph of linear equation of the form ax + by = c is dividing the plane into two disjoint regions as ----------------------, where a, b and c are constants and a, b are not both zero.                                               12805008

(a)  ax + by £ c and ax + by ³ c

(b)  ax + by < c and ax + by > c

(c)  ax + by < c and ax + by ³ c

(d)         ax + by £ c and ax + by > c

Q.221        The region of the graph ax+by > c is called ------- half plane.                      12805009

(a)                    open          (b)    closed

(c)  open as well as closed

(d) None of these

Q.222        The graph of ax + by = c is called the ------------------ half planes ax + by > c and ax + by < c.                                                                     12805010

(a)                    open          (b)           boundary of

(c)  closed 

(d) None of these

Q.223        ax + b < c is an inequality of: 12805011

(a)  one variable    

(b)  three variable

(c)  two variable    

(d) None of these

Q.224        ax + by < c is an inequality of: 12805012

(a)  one variable    

(b)  three variable

(c)  two variable    

(d) None of these

Q.225        The operation -------------- by a positive constant to each side of inequality will affect the order (or sense) of inequality.

(a)                    adding                               12805013

(b)                    subtracting

(c)                    multiplying           

(d)                   None of these

Q.226        - ¥ < x < is the solution set of the inequality:                                            12805014

(a)                  x =                        (b)    x >

(c)  x ¹ (d)                   x <

Q.227        A solution of a linear inequality in x and y is an ordered pair of numbers, which ------------- the inequality.                                          12805015

(a)  does not satisfies                    

(b)  may be satisfies

(c)  satisfies         

(d) None of this

Q.228        The region of the graph ax + by ³ c is called -------- half plane.                   12805016

(a)                    open          (b)    closed

(c)                    open as well as closed

(d) None of these

Q.229       The linear equation -------------- is called the associated or corresponding equation of the inequality ax+ by < c. 12805017

(a)                    ax + by ³ c            (b)          ax + by = c

(c)  ax + by £ c            (d)   ax + by > c

Q.230        x = c is a vertical line parallel to
-------.                                                                         
12805018

(a)                    x-axis        

(b)                    y-axis may be

(c)  y-axis                    

(d) None of these

Q.231       The inequality x < a is the open half plane to the --------- of the boundary line
x = a.                                                  
12805019

(a)                    above         (b)         left

(c)  below                    (d)   right

Q.232        A point of a solution region where two of its boundary lines intersects is called a -------- point of the solution region. 12805020

(a)                    maximum  (b)          corner

(c)  minimum              

(d) None of these

Q.233        A region, which is restricted to the
-------------- quadrant, is referred to as a feasible region for the set of given constraints.                                       
12805021                        

(a)  first  

(b)  third

(c)  second                  

(d) fourth

Q.234        The graph of 2x + y < 2 is the open half plane which is ---------- the origin side of 2x + y = 2.                                                                     12805022

(a)  at     

(b)  not on

(c)  on    

(d) None of these

Q.235     The inequality ax + by < c where
a = 0 represents .… half plane.
  (Board 2012)

12805023

(a)                    left or right            (b) upper or lower

            (c)     open             (d) none of these 

Q.236        The feasible region is ------------- if it can easily be enclosed within a circle. 12805024

(a)  bounded                     

(b)  exist

(c)  unbounded     

(d) None of these

Q.237        ax + b > c is an inequality of:     12805025

(a)                    one variable          

(b)                    three variable

(c)                    two variable          

(d)                   None of these

Q.238        The inequality y > b is the open half plane to the --------- of the boundary line
y = b.                                                                          
12805026

(a)                    above         (b)          left

(c)  below                    (d)   right

Q.239        A vertical line divides the plane into -------------- half planes.                       12805027

(a)                    upper and lower   

(b)                    many

(c)  left and right        

(d) None of these

Q.240        x=a is a vertical line perpendicular to ----------.                                             12805028

(a)                    x-axis        

(b)                    x-axis may be

(c)  y-axis                    

(d) None of these

Q.241        The inequality x ³ a is the closed half plane to the -------- of the boundary line
x = a.                                                                          
12805029

(a)                    above         (b)   left

(c)  below                    (d)   right

Q.242        The system of ------------------ involved in the problem concerned is called problem constraints.                                                    12805030

(a)  linear equalities          

(b)  equations

(c)  linear inequalities       

(d) None of these

Q.243        The graph of 2x + y £ 2 is the closed half plane which is ---------- the origin side of 2x + y = 2.                                                                   12805031

(a)  at      (b)                   not on

(c)  on    

(d) None of these

Q.244        y = b is a horizontal line parallel to
------
.                                                                            12805032

(a)                    x-axis        

(b)                    x-axis may be

(c)  y-axis

(d) None of these

Q.245        The inequality y £ b is the closed half plane to the -------- of the boundary line y = b.                                                                                 12805033

(a)                    above         (b)          left

(c)  below                    (d)   right

Q.246     Solution of inequality x+2y <6 is:  

(Board 2012) 12805034

(a)                    (1 , 1)         (b)   (1 , 3)

            (c)     (1 , 4)           (d)   (1 , 5) 

Q.247        For different values of k, the equation 4x + 5y = k represents lines
----------- to the line 4x + 5y = 0.         
12805035

(a)                    perpendicular       

(b)                    parallel

(c)  equal

(d) None of these

Q.248        The ordered pair ------- is a solution of the inequality x + 2y < 6.                 12805036

(a)                    (3 , 3)        

(b)    (1 , 1)

(c)  (4 , 4)                    

(d) None of these

Q.249        The graph of linear equation of the form ax + by = c is a line, which divides the plane into ------------ disjoint regions, where a, b and c are constants and a, b are not both zero.                                    12805037

(a)                    one

(b)                    three

(c)  two  

(d) None of these

Q.250        y = b is a horizontal line perpendicular to -----------.             12805038

(a)                    x-axis        

(b)                    y-axis may be

(c)  y-axis                    

(d) None of these

Q.251        If the line segment obtained by joining any two points of a region lies entirely within the region, then the region is called ---------.                                         12805039

(a)                    maximum  (b)   vertex

(c)  minimum               (d)   convex

Q.252       There are ------------ feasible solutions in the feasible region.       12805040

(a)                    finitely      

(b)                    two

(c)  infinitely many     

(d) None of these

Q.253        The feasible solution, which maximizes or minimizes the objective function, is called the -------------.            12805041

(a)                    maximum solution           

(b)                    optimal solution

(c)  minimum solution

(d) None of these

Q.254        A function, which is to be maximized or minimized is called an ----------------------.                                                                         12805042

(a)                    maximum function          

(b)                    objective function

(c)  minimum function

(d) None of these

Q.255        A point of a solution region where two of its boundary lines intersects is called a ---------- of the solution region. 12805043

(a)                    maximum     (b)  vertex

(c)  minimum                 (d)  None of these

Q.256        If a function f(x,y) has same maximum value at any two points, then it is -------------- at all the points of the line segment between these points.          12805044

(a)                    maximum  (b)   minimum

(c)                    may be maximum

(d) may be minimum

Q.257        A point does not lie in the feasible region is --------- corner point of the feasible region.                                                                             12805045

(a)                    a   

(b)                    may be a

(c)  not a

(d) None of these

Q.258        In linear programming equations or in-equations should not contain the terms like:                                                                                12805046

(a)                    x, y            (b)          ax, by

            (c)     bx, ay           (d)   x, y, xy

Q.259        x = 4 is the solution of inequality:                                          (Board 2014)      12805047

(a)                       (b)         

            (c)       (d)  

Q.260        The non-negative inequalities are called:                  (Board 2013)      12805048

(a)                    Parameters

(b)                    Constants

            (c)     Decision variables         

            (d)   Vertices

Q.261        (1, 0) is the solution of inequality:

                                    (Board 2015)      12805049

            (a)  7x + 2y < 8     (b)     x – 3y  < 0                   

      (c) 3x + 5y < 6      (d)   –3x + 5y > 2

Q.262        A  function which is to be maximized or minimized is called:

                                    (Board 2015)      12805050

      (a) Exponential function 

      (b) Linear function  

      (c) Quadratic function      

      (d) Objective function

           

 

 


 

 

 

 

Short Answer Questions

 


Q.263        In how many ways the
In-equalities are expressed.              
12805051

Q.264        What is linear programming? 12805052

(Board 2008)

Q.265        If a function f(x, y) have same minimum value at any two points, then what is value at the line segment between these points.                                     12805053

Q.266        What are the linear inequalities in one variable?                                         12805054

Q.267        Define an associated or corresp-onding equation of the inequality
ax + by > c.                
(Board 2008)      12805055

Q.268        What are the linear inequalities in two variables?                           12805056

Q.269        If a function f(x, y) have same maximum value at any two points, then what is value at the line segment between these points.                                     12805057

Q.270        What is the open half plane in Linear inequalities in two variable? 12805058

Q.271        What is the closed half plane in Linear inequalities in one variable? 12805059

Q.272        What is the open half plane in linear inequalities in one variable?              12805060

Q.273        What is the boundary of the half plane ax + by > c.                         12805061

Q.274        The graph of 2x + y < 2 lies on the origin side or not.                                   12805062

Q.275        What are the open half planes in linear inequalities in two variables? 12805063

Q.276        What is the boundary of the half plane ax + by > c.                        12805064

Q.277        If (3, 2) is the solution of inequality       x – y > 1                    (Board 2007)  12805065

Q.278        Define problem constraints. 12805066

Q.279        Define decision variables. 12805067

Q.280        Define a corner point (vertex). 12805068

(Board 2010)

Q.281        Define an objective function. 12805069

(Board 2008, 12)

Q.282        Define a feasible solution set. 12805070

(Board 2008, 10, 12)

Q.283        Define convex region.                 12805071

(Board 2008, 12)

Q.284        Define optimal solution.         12805072

Q.285        Define the solution region.     12805073

Q.286        Define feasible solution. (Board 2008)

12805074

Q.287        What are the linear inequalities in one variable?                                         12805075

Q.288        Define non-negative constraints and decision variables.                              12805076

Q.289        In how many ways the graph of linear equation of the form ax + by = c divides the plane.                  12805077

Q.290        The region of graph 2x + y £ 2 lies on the origin side or not.            12805078

Q.291        The region of graph 2x + y > 2 lies on the origin side or not.                        12805079

Q.292        What is a feasible solution of the system of linear inequalities?       12805080

Q.293        State fundamental extreme point theorem.                                      12805081

 

Q.294        Check whether the region of graph
2x + 3y > 1 lies on the origin side or not.

12805082

Q.295        What is the closed half plane in linear inequalities in one variable? 12805083

Q.296        What are constraints in linear programming?                                 12805084

Q.297        What is the procedure for determ-ining optimal solution?              12805085

Q.298        Indicate the solution set of linear inequality by shading 3x + 7y > 21, y < 4.

(Board 2012)              12805086

Q.299        Graph solution region x – 2y < 6

(Board 2012)      12805087

Q.300        Graph the solution set of linear
in-equality
 in xy - plane. 12805088 

    (Board 2011)

 

 

 

Unit

Conic Section

06

 

 

 

     

 

 

Multiple Choice Questions

 

q  Each question has four possible answers. Select the correct answer and encircle it.

 

 


Q.1            The curves obtained by cutting a double right circular cone by a
--------- are called conics.                 
12806001

(a)                    straight line          

(b)                    plane         (c)        curve  

(d)                   None of these

Q.2            The two parts of a right circular cones are called:                                    12806002

(a)  nappes          

(b)  apex of the cone

(c)  generator    (d)   vertex

Q.3            The fixed point of the conic is called:

12806003

(a)                    directrix     (b)        vertex

(c)                    focus

(d)                   None of these

Q.4            If the cone is cut by a plane perpendicular to the axis of the cone, then the section is a\an:                            12806004

(a)                    parabola     (b)        circular cone

(c)                    ellipse        (d)       circle

Q.5            If the cutting plane is slightly tillted and cuts only one nappe of the cone, then the section is a\an:                                    12806005

(a)                    ellipse        (b)        circular cone

(c)                    circle (d)    point circle

Q.6            If the cutting plane is parallel to the axis of the cone and intersects both of its nappes, then the section is a\an:           12806006

(a)                    parabola    

(b)                    hyperbola

(c)                    ellipse       

(d)                   None of these

Q.7            If equation of circle is (x - h) +       (y - k) = r, then centre of  a circle is:

        12806007

(a)                    (- h, - k)   (b)        (h, k)

(c)                    (- h, k)      (d)       (h, - k)

Q.8            The centre of circle x +  y + 2gx
+ 2fy + c = 0 is:                                 
12806008

(a)                    (- g, - f)    (b)        (- f, - g)

(c)                    (0 , 0)

(d)                   None of these

Q.9            If r is the radius of the circle and its centre is at origin, then  equation of circle is:                                                      12806009

(a)                    x +  y = a                     

(b)                    x +  y = r

(c)                    x -  y = a         

(d)                   x -  y = r

Q.10        If (h, k) and r is the centre and radius of the circle respectively, then equation of a circle in standard form is:

12806010

(a)                    (x + h) + (y + k) = r                

(b)                    (x - h) + (y - k)= r

(c)                    (x - h) - (y - k) = r    

(d)                   x + y = r

Q.11        In equation of circle, coefficient of each of x and y are:                        12806011

(a)                    not equal   

(b)                    opposite in signs

(c)    equal             

(d)    None of these

Q.12        The point (x , y) lies on the circle x + y + 2gx + 2fy + c = 0 only if:   12806012

(a)                    x+y +2g x+2f y + c = 0

(b)                    x+y+2g x + 2f y + c > 0

(c)                    x+y+2g x + 2f y + c < 0

(d)                   None of these

Q.13        If r is the radius of any circle and c its centre, then any point P(x , y) lies outside the circle only if:                    12806013

(a)                    |CP| < r      (b)        |CP| = r

(c)                    |CP| > r

(d)                   None of these

Q.14        The point (x, y) lies outside the circle x + y + 2gx + 2fy + c = 0 only if: 12806014

(a)                    x + y+2g x+2f y + c < 0

(b)                    x + y+2g x+2f y + c > 0

(c)                    x+y+2g x + 2f y + c = 0

(d)                   None of these

Q.15        If r is the radius of any circle and c its centre, then any point P(x , y) lies on the circle only if:                                    12806015

(a)                    |CP| < r      (b)        |CP| > r

(c)                    |CP| = r      (d)       None of these

Q.16        Two coincident tangents can be drawn to a circle from any point P(x , y)
------------ the circle.                          
12806016

(a)                    inside         (b)        on

(c)                    outside     

(d)                   None of these

Q.17        A line perpendicular to a radial chord of a circle at the end-point
(which lies on the circle) is a:          
12806017

(a)                    Secant       (b)        Diameter

(c)                    Chord        (d)       Tangent

Q.18        A circle is of radius 5 cm, the distance of a chord 8 cm long from its centre is:                                     12806018

(a)                    4 cm (b)     3 cm

(c)                    2.5 cm       (d)       3.5 cm

Q.19        One of the angles of a triangle inscribed in a circle is of 40.   If one of it’s the diameter, the other angles have the measures:                                        12806019

(a)                    30, 110  (b)        40, 100

(c)                    50, 90    (d)       20, 120

Q.20        Two circles of radius 3 cm and 4 cm touch each other externally. The distance between their centres is:                   12806020

(a)                    1 cm (b)     4 cm

(c)                    5 cm (d)    7 cm

Q.21        Two arcs of two different circles are congruent if:                                               12806021

(a)                    The circles are congruent

(b)                    The corresponding central angle

   are congruent 

(c)                    Both a and b         

(d)                   None of the above

Q.22        If a circle and a line intersect in two points, then the line is called:         12806022

(a)                    A chord         (b)      A secant

(c)                    A diameter   

(d)                   None of the above

Ans.    (b)

Q.23        The distance between the centre of a circle and any point of the circle is called:

12806023

(a)                    Tangents    (b)        secant

(c)                    Diameter   (d)       Radius

Q.24        Perpendicular dropped from the centre of a circle on a chord  ------------ the chord.                                                   12806024

(a)                    normal       (b)        bisects

(c)                    equal to    

(d)                   None of these

Q.25        A line segment having both the end-points on a circle and passing through the centre of  a circle is known as:   12806025

(a)                    Diameter               (b)        Secant

(c)                    Radial chord          (d)       Chord

Q.26        A fixed line say l is called a --------- of the conic.                                        12806026

(a)                    vertex        (b)        directrix

(c)                    focus (d)    None of these

Q.27        A line touching a circle is called:

12806027

(a)                    Tangent     (b)        Secant

(c)                    Chord        (d)       Radial chord 

Q.28        A line segment having both the end-points on a circle and not passing through the centre is called a:                                 12806028

(a)                    A chord        (b)     A secant

(c)                    A diameter   

(d) None of the above

Q.29        The centre of the circle

 is:  12806029

(a)                        (b)       

(c)                         (d)       None

Q.30        The radius of the circle

       is: 12806030

(a)                         (b)    

(c)                         (d)    None

Q.31        The radius of circle x +  y + 2gx
+ 2fy + c = 0 is:                                 
12806031

(a)                           

(b)                   

(c)                   

(d)                   None of these

Q.32        A line through a point say P perpendicular to the tangent to the curve at P is called:                                      12806032

(a)                    straight line          

(b)                    tangent line

(c)                    normal line           

(d)                   None of these

Q.33        The point (x, y) lies inside the circle x + y+ 2gx + 2fy + c = 0 only if:

12806033

(a)                    x+y+2g x + 2f y + c = 0

(b)                    x + y + 2g x+2f y+c > 0

(c)                    x + y+2g x+2f y  + c < 0

(d)                   None of these

Q.34        Any line y = mx + c intersects any circle x + y = r in:                          12806034

(a)                    at least two points 

(b)                    two points

(c)                    at most two points

(d)                   one point

Q.35        Length of a diameter of the circle x + y = a is:                                      12806034

(a)                    a       (b)     4a

(c)                    2a    

(d)                   None of these

Q.36        The set of all points in the plane that are equally distant from a fixed point is called a\an:                                         12806036

(a)                    circle (b)     circular cone

(c)                    ellipse        (d)       point circle

Q.37        If the radius of a circle is zero, then the circle is called a\an:                   12806037

(a)                    circle (b)     circular cone

(c)                    ellipse        (d)       point circle

Q.38        A line that touches the curve without cutting through it is called:                      12806038

(a)                    straight line          

(b)                    tangent line

(c)                    normal line           

(d)                   None of these

Q.39        If r is the radius of any circle and c its centre, then any point P(x , y) lies inside the circle only if:                    12806039

(a)                    |CP| < r      (b)        |CP| = r

(c)                    |CP| > r      (d)       None of these

Q.40        Two imaginary tangents can be drawn to a circle from any point P(x, y)
--------------- the circle.                      
12806040

(a)                    inside         (b)        on

(c)                    outside     

(d)                   None of these

Q.41        An angle in a semi-circle is:  12806041

(a)                    0°      (b)     90°

(c)                    180° 

(d)                   None of these

Q.42        All lines through a fixed point A and points on the circle generates a right: 12806042

(a)                    parabola     (b)        circular cone

(c)                    ellipse        (d)       circle

Q.43        Two real and distinct tangents can be drawn to a circle from any point
P(x
, y) ---------- the circle.              12806043

(a)                    inside         (b)        on

(c)                    outside     

(d)                   None of these

Q.44        The parametric equations of the circle x +  y = r are:             12806044

(a)                    x = r sin q, y = r sin q       

(b)                    x = r cos q, y = r sin q

(c)                    x = r cos q, y = r cos q     

(d)                   None of these

Q.45        The general equation of second degree Ax + By + Gx + Fy + c = 0 is a\an
---------- if A
¹ B and both are of the same signs.                                                   12806045

(a)                    parabola     (b)        ellipse

(c)                    hyperbola  (d)       circle

Q.46        The equation of circle with points (x1, y1) and (x2, y2) as the ends of the diameter is:                                       12806046

(a)                   

(b)                   

(c)                   

(d)                   None

Q.47        A chord containing the centre of the circle is called --------- of the circle. 12806047

(a)                    diameter    (b)        chord

(c)                    radius       

(d)                   None of these

Q.48        If a point lies inside a circle, then its distance from the centre is:                       12806048

(a)                    Equal to the radius           

(b)                    Less than the radius

(c)                    Greater than the radius     

(d)                   Equal to or greater than the radius

Q.49        The equation x+ y+ 2x+3y = 10 represents a:                                     12806049

(a)                    a pair of lines        

(b)                    circle

(c)                    ellipse        (d)       hyperbola

Q.50        The condition for the line y = mx + c to be a tangent to the circle x + y = a is c = ------------.                                                12806050

(a)                    ± a          

(b)                    ± a

(c)                    ± a          

(d)                   ± a

Q.51        A line segment whose end points lie on the circle is called a
-------- of the circle.               
12806051

(a)                    radius        (b)        chord

(c)                    diameter   

(d)                   None of these

Q.52        Measure of the central angle of a minor arc is ---------- the measure of the angle subtended in the corresponding major arc.                                        12806052

(a)                    equal (b)     double

(c)                    not equal to          

(d)                   None of these

Q.53        The radius of point circle is: 12806053

(a)                    0       (b)    

(c)                    r        (d)    None

Q.54        If the focus lies on the y-axis with coordinates F(0, a) and directrix of the parabola is y = - a, then the equation of parabola is:                                     12806054

(a)                    x = 4ay    (b)        y = 4ax

(c)                    y = - 4ax (d)       x = - 4ay

Q.55        The ratio between the measure of the radial segment and the diameter of a circle is:                                      12806055

(a)                    2 : 1  (b)     4 : 3

(c)                    1 : 2  (d)    1 :

Q.56        A chord passing through the focus of a parabola is called a --------- of the parabola.                                       12806056

(a)                    directrix     (b)        latus rectum

(c)                    focus (d)    focal chord

Q.57        If the equation of the parabola is to y = 4ax, then opening of the parabola is to the right of the:                                    12806057

(a)                    x-axis         (b)        y = x

(c)                    y-axis        

(d)                   None of these

Q.58        If the equation of the parabola is to x = 4ay, then opening of the parabola is to ----------- of the x-axis.                 12806058

(a)                    left    (b)     upward

(c)                    right  (d)    downward

Q.59        The axis of the parabola x = 4ay is:

12806059

(a)                    x = 0 (b)     x = - a

(c)                    y = 0 (d)    y = - a

Q.60        The vertex of the parabola
x
= - 4ay is:                                      12806060

(a)                    (- a, 0)       (b)        (0, 0)

(c)                    (0, - a)       (d)       (0, a)

Q.61        The graph of the parabola
y
= - 4ax is symmetric about:        12806061

(a)                    x-axis         (b)        y = x

(c)                    y-axis        

(d)                   None of these

Q.62        The focus of the parabola y= 4ax is:

12806062

(a)                    (- a, 0)       (b)        (0, a)

(c)                    (0, - a)       (d)       (a, 0)

Q.63        If the focus lies on the y-axis with coordinates F(0 , - a) and directrix of the parabola is y = a, then the equation of the parabola is:                                           12806063

(a)                    x = 4ay    (b)        y = 4ax

(c)                    x = - 4ay (d)       y = - 4ax

Q.64        The equ. of latus-rectum of the parabola y = - 4ax is:                12806064

(a)                    x = a (b)     x = - a

(c)                    y = a (d)    y = - a

Q.65        The graph of the parabola
y
= - 4ax lies in quadrants:                        12806065

(a)                    I and II      (b)        III and IV

(c)                    II and III   (d)       I and IV

Q.66           The eqn. of directrix of the parabola y=-4ax is:                                   12806066

(a)                    x = a (b)     x = - a

(c)                    y = a (d)    y = - a

Q.67        The coordinates of the end points of the latus-rectum of the parabola y = 4ax are (a, 2a) and ---------.                 12806067

(a)                    (- a, - 2a)  (b)        (a, 2a)

(c)                    (a, - 2a)     (d)       (- a, 2a)

Q.68        The opening of the parabola y = 4ax is to the -------- of the y-axis.                    12806068

(a)                    left   

(b)                    upward

(c)                    right 

(d)                   downward

Q.69        The opening of the parabola x = 4ay is upward of the:                           12806069

(a)                    x-axis        

(b)                    y = c

(c)                    y-axis        

(d)                   None of these

Q.70        The graph of the parabola x = 4ay lies in quadrants:                             12806070

(a)                    I and II      (b)        III and IV

(c)                    II and III   (d)       I and III

Q.71        The vertex of the parabola
y
= 4ax is:                                         12806071

(a)                    (- a, 0)       (b)        (a, 0)

(c)                    (0, - a)       (d)       (0, 0)

Q.72        The focus of the parabola y= - 4ax is:                                                      12806072

(a)                    (- a, 0)       (b)        (a, 0)

(c)                    (0, - a)       (d)       (0, 0)

Q.73        The directrix of the parabola
x
= 4ay is:                                         12806073

(a)                    x = a (b)    x = - a

(c)                    y = a (d)   y = - a

Q.74        A line joining two distinct points on a parabola is called a ----------- of the parabola.                                       12806074

(a)                    chord         (b)        vertex

(c)                    focus (d)    directrix

Q.75        The focus of the parabola x = - 4ay is:                                                     12806075

(a)                    (- a, 0)       (b)        (0, 0)

(c)                    (0, - a)       (d)       (0, a)

Q.76        The conic is a parabola, if:   12806076

(a)                    e = 1 (b)     e > 1

(c)                    0 < e < 1    (d)       e = 0

Q.77        The opening of the parabola
y
= – 4ax is to the left of the:          12806077

(a)                    x-axis         (b)        x = 1

(c)                    y-axis         (d)       x = 0

Q.78        The point where the axis meets the parabola is called ------------ of the parabola.

12806078

(a)                    directrix     (b)        vertex

(c)                    focus (d)    eccentricity

Q.79        The length of the latus rectum of the parabola y = 4ax is:                                  12806079

(a)                    a       (b)     4a

(c)                    2a     (d)    None of these

Q.80        If the focus lies on the x-axis with coordinates F(- a, 0) and directrix of the parabola is x = a, then the equation of the parabola is:                                           12806080

(a)                    x = 4ay    (b)        y = 4ax

(c)                    x = - 4ay (d)       y = - 4ax

Q.81        The opening of the parabola
x
= 4ay is to ------------ of the x-axis. 12806081

(a)                    left    (b)     upward

(c)                    right  (d)    downward

Q.82        The parabola y = 4ax lies in quadrants:                                       12806082

(a)                    I and II      (b)        III and IV

(c)                    II and III   (d)       I and IV

Q.83        The graph of the parabola
x
= - 4ay symmetric about:            12806083

(a)                    x-axis         (b)        major axis

(c)                    y-axis         (d)       minor axis

Q.84        The equation of the latus-rectum of the parabola             y = 4ax is:     12806084

(a)                    x = a (b)     x = - a

(c)                    y = a (d)    y = - a

Q.85        The axis of the parabola y=- 4ax is:

12806085

(a)                    x = a (b)     x = 0   

(c)                    y = a (d)    y = 0

Q.86        The equ of latus-rectum of the parabola          x = - 4ay is:                    12806086

(a)                    x = a (b)     x = - a

(c)                    y = a (d)    y = - a

Q.87        y = 4ax, is the standard equation of the:                                                   12806087

(a)                    ellipse        (b)        parabola

(c)                    hyperbola 

(d)                   None of these

Q.88        The focal chord perpendicular to the axis of the parabola is called
-------------- of the parabola.             
12806088

(a)                    directrix     (b)        latus rectum

(c)                    focus (d)    focal chord

Q.89        The graph of the parabola
x
= - 4ay lies in quadrants:                        12806089

(a)                    I and II      (b)        III and IV

(c)                    II and III   (d)       I and IV

Q.90        The axis of the parabola y = 4ax is:

12806090

(a)                    x = 0 (b)     x = a   

(c)                    y = 0 (d)    y = a

Q.91        The directrix of the parabola                 x = - 4ay is:                                            12806091

(a)                    x = a (b)     x = - a

(c)                    y = a (d)    y = - a

Q.92        The vertex of the parabola
x
= 4ay is:                                         12806092

(a)                    (- a, 0)       (b)        (0, a)

(c)                    (0, - a)       (d)       (0, 0)

Q.93        The axis of the parabola x = - 4ay is:                                                        12806093

(a)                    x = a (b)     x = 0

(c)                    y = a (d)    y = 0

Q.94        If the focus lies on the x-axis with coordinates F(a, 0) and directrix of the parabola is x = - a, then the equation of parabola is:                                     12806094

(a)                    x = 4ay    (b)        y = 4ax

(c)                    x = - 4ay (d)       y = - 4ax

Q.95        If the equation of the parabola is to y = - 4ax, then opening of the parabola is to the -------- of the y-axis.             12806095

(a)                    left    (b)     upward

(c)                    right  (d)    downward

Q.96        If the equation of the parabola is to x = 4ay, then opening of the parabola is to upward of the:                                    12806096

(a)                    x-axis         (b)        major axis

(c)                    y-axis         (d)       minor axis

Q.97        The graph of the parabola               y = 4ax symmetric about:               12806097

(a)                    x-axis         (b)        major axis

(c)                    y-axis         (d)       minor axis

Q.98        The graph of the parabola x = 4ay symmetric about:                             12806098

(a)                    x-axis         (b)        y = x

(c)                    y-axis        

(d)                   None of these

Q.99        The directrix of the parabola
y
= 4ax is:                                         12806099

(a)                    x = a (b)     x = - a

(c)                    y = a (d)    y = - a

Q.100    The vertex of the parabola
y
= - 4ax is:                                      12806100

(a)                    (- a, 0)       (b)        (a, 0)

(c)                    (0, - a)       (d)       (0, 0)

Q.101    The focus of the parabola x = 4ay is:                                                         12806101

(a)                    (- a, 0)       (b)        (a, 0)

(c)                    (0, - a)       (d)       (0, a)

Q.102    The equation of the latus-rectum of the parabola x = 4ay is:                 12806102

(a)                    y = a (b)     y = - a

(c)                    x = a (d)    x = - a

Q.103    The point of a parabola which is closest to the focus is the:                     12806103

(a)                    directrix     (b)        vertex

(c)                    focus (d)    chord

Q.104    The number e denotes the ------------- of the conic.                                                12806104

(a)                    directrix     (b)        vertex

(c)                    focus (d)    eccentricity

Q.105    The equation 2x+ 3y= 36 represents:                                       12806105

(a)                    a circle      (b)       a parabola

(c)                    an ellipse   (d)       a hyperbola.

Q.106    The line y = x + touches the ellipse + = 1, then:                           12806106

(a)                    c = ± 10     (b)        c = ± 12

(c)                    c = ± 13     (d)       None of these.

Q.107    In equation of ellipse + = 1, if
a > b, then c
= ----------.                    12806107

(a)                    a - b       (b)        b - a

(c)                    a + b       (d)       b - a

Q.108    The directrics of the ellipse
+   = 1, a > b is:                         12806108

(a)                    x = ±      (b)        x = ±

(c)                    y = ±      (d)       y = ±

Q.109    The centre of the ellipse + = 1, a > b is:                                             12806109

(a)                    (a, 0) (b)     (± b, 0)

(c)                    (0, 0) (d)    (0, ± a)

Q.110    The eccentricity of the ellipse
+ = 1, a > b is:                           12806110

(a)                    e = > 1   

(b)                    e = < 1

(c)                    e = ±       

(d)                   None of these

Q.111    + = 1 is an equation of the
------------ in standard form.            
12806111

(a)                    ellipse       

(b)                    parabola

(c)                    hyperbola 

(d)                   None of these

Q.112    The foci of the ellipse
+ = 1, a > b are:                        12806112

(a)                    (0, ± c)       (b)        (± c, 0)

(c)                    (± a, 0)       (d)       (0, ± a)

Q.113    Eccentricity of the ellipse
+ = 1, a > b is:                           12806113

(a)                    e  > 1        

(b)                    e  < 1

(c)                    e = 0

(d)                   None of these

Q.114    The foci of the ellipse
+ = 1, a > b is:                           12806114

(a)                    (0, ± c)       (b)        (± c, 0)

(c)                    (± a, 0)       (d)       (0, ± a)

Q.115    The vertices of the ellipse
+ = 1, a > b is:                           12806115

(a)                    (0, ± a)       (b)        (± c, 0)

(c)                    (± a, 0)       (d)       (0, ± c)

Q.116    The length of major axis of the ellipse + = 1, a > b is:                     12806116

(a)                    4a     (b)     2a

(c)                    4b     (d)    2b

Q.117    The major axis of the ellipse
+ = 1, a > b is:                             12806117

(a)                    x = 0 (b)     x = - a

(c)                    y = 0 (d)    y = - a

Q.118    The length of minor axis of the ellipse + = 1, a > b is:                     12806118

(a)                    a       (b)     2a

(c)                    b       (d)    2b

Q.119    The covertices of the ellipse
+ = 1, a > b is:                           12806119

(a)                    (± b, 0)     

(b)                    (0, ± b)

(c)                    (± a, 0)      

(d)                   (0, ± a)

Q.120    The centre of the ellipse
 
+ = 1, a > b is:                          12806120

(a)                    (0, 0) (b)     (± c, 0)

(c)                    (a, 0) (d)    (0, a)

Q.121    Foci of ellipse lie on the:

12806121

(a)                    x-axis        

(b)                    major axis

(c)                    y-axis        

(d)                   minor axis

Q.122    The major axis of the ellipse
+ = 1, a > b is:                          12806122

(a)                    x = a (b)     x = 0

(c)                    y = a (d)    y = 0

Q.123    Equation of tangent to the ellipse
+ = 1 at the point (x1, y1) is given by:

12806123

(a)                      +  = 1                            

(b)                      +  = 1

(c)                      +  = 0    

(d)                   None of these.

Q.124    The line segment between the covertices of an ellipse is called:   12806124

(a)                    minor axis

(b)                    major axis

(c)                    transverse axis      

(d)                   principal axis

Q.125    In case of ellipse  + = 1: 12806125

(a)                    ae <          (b)        ae > 

(c)                    ae =          (d)       1 - e< 0

Q.126    The equation of the ellipse whose foci are (0, ± 4) and the length of minor axis 6 units is:                                          12806126

(a)                    + = 1         

(b)                    + = 1

(c)                    + = 1

(d)                   None of these.

Q.127    The equation of an ellipse whose foci are (±2,0) and the eccentricity is is: 12806127

(a)                    + =          

(b)                    + = 1

(c)                    + = 1

(d)    None of these.

Q.128     The eccentricity of the ellipse
+ = 1 if its latus-rectum be equal to one half of its major axis is:             12806128

(a)                       (b)    

(c)                    (d)    None of these.

Q.129    The sum of the focal distances of a point on an ellipse + = 1, a > b > 0 is:

(a)                    2a + 2b      (b)        2a        12806129

(c)                    2b     (d)    None of these.

Q.130    The sum of the focal distances of a point on an ellipse + = 1,  a > b > 0 is equal to:                                           12806130

(a)                    length of minor axis         

(b)                    length of major axis

(c)                    2a + 2b     

(d)                   None of these.

Q.131    ------------ are tangent to + = 1 for all values of m.                           12806131

(a)                    y = mx ±       

(b)                    y = mx ±

(c)                    y = mx ±       

(d)                   y =   x ±

Q.132    For an ellipse  which is true:                                                    12806132

(a)                   

(b)                   

(c)                   

(d)                   None

Q.133    The conic is an ellipse, if:     12806133

(a)                    e = 1 (b)     e >1

(c)                    0 < e < 1    (d)       None of these

Q.134    A second degree equation of the form ax+ by + 2gx + 2fy + c = 0 with either a = 0 or b = 0 but not both zero, represents a\an:                                12806134

(a)                    ellipse        (b)        parabola

(c)                    hyperbola  (d)       None of these

Q.135    In equation of ellipse + = 1,
if a > b, then c
= ----------.                12806135

(a)                    a + b       (b)        b - a

(c)                    a - b       (d)       b - a

Q.136    The vertices of the ellipse
+ = 1, a > b is:                           12806136

(a)                    (0, ± b)      (b)        (± b, 0)

(c)                    (± a, 0)       (d)       (0, ± a)

Q.137    The directrics of the ellipse
+ = 1, a > b is:                           12806137

(a)                    x = ±       (b)        x = ±

(c)                    y = ±       (d)       y = ±

Q.138    The length of latus-rectum of the ellipse + = 1, a > b is equivalent to:

12806138

(a)                        (b)     2a       

(c)                        (d)    2b

Q.139    In equation of ellipse + = 1,
if b > a, then c
=                               12806139

(a)                    a + b        (b)        b - a

(c)                    a - b        (d)       b - a

Q.140    Foci of a hyperbola always lie on:

12806140

(a)                    x-axis        

(b)                    y-axis

(c)                    conjugate-axis                  

(d)                   transverse-axis

Q.141    Asymptotes are very helpful in graphing:                                      12806141

(a)                    Circle        

(b)                    Parabola

(c)                    Ellipse      

(d)                   Hyperbola

Q.142    In case of hyperbola - = 1

12806142

(a)                    ae <         

(b)                    ae > 

(c)                    ae =          (d)       e < 1

Q.143    ---------------- , y = X sin q + Y cos q are equations of transformation for a rotation of axes through an angle
q, (0<q< 90°).                                     12806143

(a)                    x = X cos q + Y sin q

(b)                    x = X sin q - Y cos q

(c)                    x = X cos q - Y sin q

(d)                   None of these

Q.144    ------------- is a tangent to y = 4ax for all non-zero values of m.              12806144

(a)                    y = mx -            

(b)                    y = - mx +

(c)                    y = mx +            

(d)                   None of these

Q.145    The lines -------------- are called asymptotes of the hyperbola .

12806145

(a)                    x = ± y    (b)        y = ± x

(c)                    y = ± x    (d)       None

Q.146    The transverse axis of the hyperbola - = 1 is:                                              12806146

(a)                    x = 0 (b)     x = a

(c)                    y = 0 (d)    y = - a

Q.147    The foci of the hyperbola
- = 1 is:                                     12806147

(a)                    (0, ± c)       (b)        (± c, 0)

(c)                    (± a, 0)       (d)       (0, ± a)

Q.148    - = 1 is the standard equation of the:                                                            12806148

(a)                    ellipse        (b)        parabola

(c)                    hyperbola 

(d)                   None of these

Q.149    The conic is a hyperbola, if: 12806149

(a)                    e = 1 (b)     e >1

(c)                    0 < e < 1    (d)       e = 0

Q.150    In equation of the hyperbola
- = 1 the value of c = -------   12806150

(a)                    a + b       (b)        b - a

(c)                    a - b       (d)       b - a

Q.151    The vertices of the hyperbola 

- = 1 is:                                     12806151

(a)                    (0, 0) (b)     (± c, 0)

(c)                    (± a, 0)       (d)       (0, ± a)

Q.152    The eccentricity of the hyperbola
- = 1 is:                                     12806152

(a)                    e = > 1   

(b)                    e = < 1

(c)                    e = ±       

(d)                   None of these

Q.153    The general equation of second degree Ax+ By+ Gx + Fy + c = 0 is a\an
----------- if A
¹ B and both are of opposite signs.                                                   12806153

(a)                    ellipse        (b)        parabola          

(c)                    hyperbola  (d)       circle

Q.154    ----------- are tangent to - =1 for all values of m.                               12806154

(a)                    y = mx ±        

(b)                    y = mx ±

(c)                    y = mx ±        

(d)                   None of these

Q.155    The directrics of the hyperbola
- = 1 are:                                  12806155

(a)                    y = ±        (b)        x = ±

(c)                    y = ±      (d)       x = ±

Q.156    The centre of the hyperbola
- = 1 is:                                     12806156

(a)                    (0, 0) (b)     (± c, 0)

(c)                    (± a, 0)       (d)       (0, ± a)

Q.157    The eccentricity of the hyperbola
- = 1 is:                                     12806157

(a)                    e  > 1        

(b)                    e  < 1

(c)                    e = 1

(d)                   None of these

Q.158    The general equation of second degree Ax+ By+ Gx + Fy + c = 0 is a\an
-------------- if A = B
¹ 0.                    12806158

(a)                    circle (b)     parabola

(c)                    hyperbola  (d)       ellipse

Q.159    The general equation of second degree ax + by +  2hxy + 2gx + 2fy + c=0 is a parabola if:                          12806159

(a)                    h - ab = 0           

(b)                    h - ab ¹ 0

(c)                    h - ab < 0           

(d)                   h - ab > 0

Q.160    The general equation of second degree ax + by + 2hxy + 2gx + 2fy+c = 0 is an ellipse or a circle, if:                    12806160

(a)                    h - ab = 0            (b)        h - ab ¹ 0

(c)                    h - ab < 0            (d)       h - ab > 0

Q.161    The general equation of second degree Ax + By + Gx + Fy + c = 0 is a\an
-------------- if either A = 0 or B = 0.
12806161

(a)                    ellipse       

(b)                    parabola

(c)                    hyperbola 

(d)                   circle

Q.162    The general equation of second degree ax + by +  2hxy+2gx + 2fy + c = 0 is a hyperbola if:                                     12806162

(a)                    h - ab = 0           

(b)                    h - ab < 0

(c)                    h - ab ¹ 0           

(d)                   h - ab > 0

Q.163    The axes are rotated about the origin through an angle q of
ax
+ by +  2hxy + 2gx + 2fy + c = 0 is given  by ------, where 0 < q < 90°.        12806163

(a)                    tan 2q =        

(b)                    tan 2q =

(c)                    tan 2q =           

      (d) None of these

Q.164    The radius of circle

 is: (Board 2014)12806164

(a)                    (b)       

(c)                             (d)      

Q.165    The vertex of parabola

(x – 1)2 = 8(y + 2) is:           (Board 2014)12806165

(a)                    (1, – 2)       (b)        (0, 1)

(c)                    (–1, –2)      (d)       (1, 2)

Q.166    The centre of circle

(x+3)2 + (y–2)2 = 16 equals: Board 2014)12806166

(a)                    (–3, 2)        (b)        (3, –2)

           (c)      (3, 2)             (d)    (–3, –2)

Q.167    The eccentricity of equals:                          

(Board 2014)12806167

(a)                      (b)    

           (c)                    (d)   

Q.168    Centre of circle

 (Board 2013)12806168

(a)                         (b)       

           (c)                (d)   

Q.169    Foci of ellipse  are:                            

(Board 2013)12806169

(a)                          (b)       

           (c)               (d)   

Q.170    The set of all points in the plane that are equally distant from a fixed point is called:

(Board 2015)12806170

      (a) Ellipse                   (b)    Parabola          

      (c)  Hyperbola            (d)    Circle

Q.171    The parabola x2 = y passes through point:                              (Board 2015)12806171

      (a)                     (b)                  

      (c)                    (d) 

Q.172    Equation of axis of the parabola x = 4ay is                                   (Board 2015)12806172

      (a)  x = 0                     (b)   x = a             

      (c)  y = 0                     (d)   y = a

Q.173    Length of tangent from (0,1)  to x2+ y2 +6x – 3y + 3 = 0 is:     (Board 2015)12806173

      (a)  2                           (b)  3                   

      (c) 4                            (d)   1

 

 



Short Answer Questions

ONS & ANSWRS


Q.1            Give original definition of conics. 12806174

Q.2            Define conics in terms of eccentricity, focus, and directrix.         12806175

Q.3            Define conics.                         12806176

Q.4            Define vertex of the cone.     12806177

Q.5            Define circle as plane section of a cone.                                                      12806178

Q.6            Define parabola as plane section of a cone.                                                            12806179

Q.7            Define ellipse as plane section of a cone.                                                    12806180

Q.8            Define hyperbola as plane section of a cone.                                                          12806181

Q.9            Give definition of parabola.  12806182

Q.10        Define latus rectum of the parabola.

12806183

Q.11        Define the axis of the cone.   12806184

Q.12        Define translation of axes.    12806185

Q.13        Define radius of the circle.   12806186

Q.14        Define point circle.(Board 2012) 12806187

Q.15        Define nappes.                       12806188

Q.16        In cone how the section of a circle is obtained.                                          12806189

Q.17        In cone how the section of an ellipse is obtained.                                       12806190

Q.18        Write a standard form of circle.

12806191

Q.19        Define a diameter of the circle.

(Board 2012) 12806192

Q.20        Write a general form of circle. 12806193

(Board 2012)

Q.21        Give definition of a circle. 12806194

(Board 2012)

Q.22        Define centre of the circle.    12806195

Q.23        Write the conditions that the point
P(x
, y) lies inside, on and outside the circle x + y+ 2gx + 2fy + c = 0.           12806196

Q.24        Define a chord of the circle. 12806197

(Board 2012)

Q.25        Find the centre and radius of the circle. (Board 2011)

12806198

Q.26        Find the equation of circle with ends of a diameter at (-3, 2), (5, 6).      12806199

(Board 2008, 10)

Q.27        Find the centre and radius of the circle.(Board 2010) 12806200

Q.28        Derive the equation of circle in standard form.   (Board 2011)                12806201

Q.29        Write an equation of the circle with centre (-3, 5) and radius 7.            12806202

Q.30        Show that the equations 5x+ 5y
+ 24x + 36y + 10 = 0 represents a circle. Also find its centre and radius.           12806203

(Board 2009)

Q.31        Determine whether the point           P(-5, 6) lies outside, on or inside the circle x+y+4x-6y-12=0      (Board 2012) 12806204

Q.32        Check the position of the point
(5, 6) w.r.t. the circle x2 + y2 = 81.
12806205

(Board 2010)

Q.33        Find the equation of the tangent and normal at  (4, 3) to the circle                                            (Board 2010)      12806206

Q.34        Check the position of the point
(5,6) w.r.t the circle

(Board 2012)         12806207

Q.35        Find the length of the tangent drawn from the point (–5, 4) to the circle .

(Board 2007) 12806208

Q.36        Find the co-ordinates of points of intersection of the line 2x + y = 5 and the circle x2+ y2+2x-9=0. Also find the length of the intercepted chord.                    12806209

 

Q.37        Find the length of the tangent from the point P(-5,10) to  the circle 5x+ 5y    + 14x + 12y - 10 = 0           (Board 2009)   12806210

Q.38        Prove that the normal of the circle passes through the centre of circle.  12806211

(Board 2012)

Q.39        Tangents are drawn from (- 3, 4) to the circle x+ y= 21. Find an equation of the line joining the points of contact. 12806212

Q.40        Prove that the tangent to a circle at any point of the circle is perpendicular to the radial segment at that point. 12806213

Q.41        Find the equation of parabola having focus at (a, 0) and directrix x+a=0

(Board 2010)  12806214

Q.42        Define a focal chord of the parabola.

12806215

Q.43        In cone how the section of a parabola is obtained.                                    12806216

Q.44        Define a chord of the parabola. 12806217

Q.45        Define axis of the parabola. 12806218

Q.46        Define vertex of the parabola. 12806219

Q.47        Write an equation of the parabola with given elements: Focus (2, 5); directrix y = 1.                                                  12806220

Q.48        Write equations of the tangent and normal to the parabola                    12806221

x= 16y at the point whose abscissa is 8.

Q.49        Analyze the parabola x= - 16y

12806222

Q.50        Find an equation of the parabola whose focus is F(- 3, 4) and directrix is
3x
- 4y + 5 = 0.                                  12806223

Q.51        Discuss and sketch the graph of the parabola: y=  – 12 x                      12806224

Q.52        Discuss and sketch the graph of the  parabola: y= 8 x     (Board 2012) 12806225

Q.53        Discuss and sketch the graph of the  parabola: x = - 16y                                   12806226

Q.54        Discuss and sketch the graph of the  parabola:  x= 5 y  (Board 2011, 12) 12806227

Q.55        Write an equation of the parabola with given elements: Focus ( – 3, 1); directrix x = 3                                   12806228

Q.56        Write an equation of the parabola with given elements: Focus (– 3,  1) ; directrix x – 2 y – 3 = 0                        12806229

Q.57        Write an equation of the parabola with given elements.                         

Focus (1, 2), vertex (3, 2)  (Board 2008) 12806230

Q.58        Write an equation of the parabola with given elements:                         

Focus (-1, 0), vertex (-1, 2)              12806231

Q.59        Write an equation of the parabola with given elements.                          12806232

      Directrix  x = - 2, focus (2, 2)

Q.60         Write an equation of the parabola with given elements: Directrix y = 3, vertex (2, 2)

12806233

Q.61        Write an equation of the parabola with given elements: Directrix y = 1, length of latus-rectum is 8. Opens downward.

12806234

Q.62        Find the equation of the parabola having its focus at the origin and directrix is parallel to x-axis.                                    12806235

Q.63        Find the equation of the parabola having its focus at the origin and directrix is parallel to y – axis.                                    12806236

Q.64        Show that the ordinate at any point P of the parabola is the mean proportional between the length of the latus rectum and the abscissa of P.                           12806237

Q.65        Find an equation of the parabola formed by the cables of a suspension bridge whose span is a m and the vertical height of the supporting towers is b m.   12806238

Q.66        A suspension bridge with weight uniformly distributed along the length has two towers of 100 m height above the road surface and are 400 m apart. The cables are parabolic in shape and are tangent to road surface at the centre of the bridge. Find the height of the cables at a point 100 m from the centre.                                                12806239

Q.67        Show that the point of parabola which is closest to the focus is the vertex.     12806240

Q.68        Give definition of an ellipse. 12806241

Q.69        Find an equation for the ellipse with given data: Foci  (0, – 1) and (0,  – 5) and major axis of length 6                      12806242

Q.70        Find an equation for the ellipse with given data: Vertices (0, ± 5), eccentricity =

(Board 2012)   12806243

Q.71        Find an equation for the ellipse with given data: Centre (0,0), focus (0,–3), vertex (0, 4)                                 (Board 2011) 12806244

Q.72        Find the centre, foci, eccentricity, vertices and directrices of the ellipse whose equation is  x + 4y = 16                     12806245

Q.73        Find the centre, foci, eccentricity, vertices and directrices of  the ellipse whose equation is 9x+ y = 18                       12806246

(Board 2011)

Q.74        Prove that the latus rectum of the ellipse   +    = 1, is              12806247

Q.75        The major axis of an ellipse in standard form lies along the
x-axis and has length 4
. The distance between the foci equals the length of the minor axis. Write an equation of the ellipse.

12806248

Q.76        Show that the equation 9x2 – 18x + 4y2 + 8y – 23 = 0 represents an ellipse.      12806249

Q.77        An arch in the form of half an ellipse is 40 m wide and 15 m high at the centre. Find the height of the arch at a distance of 10 m from its centre.                               12806250

Q.78        Analyze the equation 4x+9y= 36

12806251

Q.79        Find an equation for the ellipse with given data.                                       12806252

Foci  (± 3 , 0) and minor axis of length 10 .

Q.80         Find an equation for the ellipse with foci  (– 3 , 0) and vertices (± 6, 0). 12806253

(Board 2010)

Q.81        In cone how the section of a hyperbola is obtained.                      12806254

Q.82        Give definition of a hyperbola.12806255

(Board 2011)

Q.83        Find an equation of the hyperbola with the given data. Centre (0, 0), focus
(6, 0) , vertex (4, 0)                           
12806256

Q.84        Find an equation of the hyperbola with the given data.   (Board 2012)   12806257

Foci (± 5, 0) , Vertex (3, 0)

Q.85        Find equations of tangents which passes through the given points to the given conic. x– 2y=2   through (1,– 2) 12806258

Q.86        Find the eccentricity, the coordinates of the vertices and foci of the asymptotes of the hyperbola - = 1                  12806259

(Board 2010)

Q.87        Find equations of tangents which pass through the given point to the given conic. x + y = 25 through (7,  – 1) 12806260

Q.88        Discuss the equation            

25x-16y= 400             12806261

Q.89        Find an equation of the hyperbola with the given data.                          

            Foci (2 ± 5, - 7), length of the transverse axis 10.                                    12806263

Q.90        Find an equation of the hyperbola with the given data.                           12806264

      Foci (0, ± 9) , directrices y = ± 4

Q.91        Find an equation of the hyperbola whose foci are (± 4, 0) and vertices (±2,0).

(Board 2011)         12806265

Q.92        Define asymptote.                  12806266

Q.93        What are asymptotes of hyperbola
- = 1.                                      12806267

Q.94        Show that the equation

4x- 8x - y- 2y - 1 = 0 represents a hyperbola.                                          12806268

Q.95        Find the equation of the hyperbola referred to its axes as the axes of coordinates and the distance between whose foci is 16 and whose eccentricity is .

12806269

Q.96        Find an equation of the hyperbola with foci (0, ± 6), vertex (0, 3).          12806270

Q.97        Find an equation of the hyperbola with centre (2, 2), horizontal transverse axis of length 6 and eccentricity e = 2.      12806271

(Board 2011)

Q.98        Find the centre, foci, eccentricity, vertices and directrices of the ellipse whose equation is x– y= 9                   12806272

Q.99        Find the centre, foci, eccentricity, vertices and directrices of the ellipse whose equation is   –  = 1             12806273

Q.100    Find the centre, foci, eccentricity, vertices and directrices of the ellipse whose equation is    –    = 1                        12806274

Q.101    Find the centre, foci, eccentricity, vertices and directrices of the ellipse whose equation is – x= 1  (Board 2012)        12806275

Q.102    Define slope of a tangent line to a curve.                                                    12806276

Q.103    Define a normal line to a curve.

12806277

Q.104    Define a tangent line to a curve. 12806273

Q.105    Show that 2x - xy + 5x- 2y+ 2 = 0 represent a pair of lines.                  12806278

Q.106    Write equations of the tangent and normal to the conic + = 1 at the point .                                              12806279

Q.107    Find the points of intersection of the ellipse + = 1 and the hyperbola
- = 1.                                         12806280

Q.108    Find equations of the tangents of the ellipse  + = 1 which are parallel to the line  3x + 8y + 1 = 0.               12806281

Q.109    Find equations of the common tangents to the two conic + = 1 and
 
+ = 1                                         12806282

Q.110    Transform the equation      

x + 6x - 8y + 17 = 0. Referred to O¢(- 3, 1) as origin, axes remaining parallel to the old axes                                                     12806283

Q.111    Write equations of the tangent and the normal to the curve y = f(x) at a given point (x, y).                                                12806284

Q.112    Write equation of the tangent to the curve whose parametric equations are
x = f(t) and y = f(t) at the point t.            12806285

Q.113    Write about translation of axes. 12806286

Q.114    Find an equation of the curve
x + 16y - 16 = 0 with respect to new parallel axes obtained by shifting the origin to the point O¢(0, 1).                                    12806287

Q.115    Transform the equation x+6x-8y
+ 17 = 0. Referred to O
¢(- 3, 1) as origin, axes remaining parallel to the old axes.       12806288

Q.116    Write about rotation of axes. 12806289

Q.117    Find equations of the tangent and normal to the given curve at the indicated point: y = 4ax at (at, 2at)                     12806290

Q.118    Find equations of the tangent to the given curve at the indicated point: 

  +  = 1 at (a cos q, b sin q)       12806291

Q.119    Find equations of tangents which passes through the given points to the given conics: y = 12x   through (1,  4)            12806292

Q.120    Find equations of the tangents to the ellipse + y= 1 which are parallel to the line 2x  – 4y  + 5 = 0.                              12806293

 

 

Unit

Vectors

07

     

 

 

 

 

 

 

 

 

Multiple Choice Questions

 

q  Each question has four possible answers. Select the correct answer and encircle it.

 

 


Q.1            Which of the following is a vector quantity?                                              12807001

(a)  work       (b)                 temperature

(c)     distance       

(d)    displacement

Q.2            For a vector       12807002

(Board 2005)

(a)     2A                (b)     A2

(c)                     (d)   

Q.3            Length of the vector  is:

(Board 2010)      12807003

(a)     3                   (b)     4

(c)     6                   (d)    5

Q.4            Which of the following is not a vector quantity?                           12807004

(a)  weight    (b)                 mass

(c)     force             (d)    velocity

Q.5            If   = 1, then  is a:      12807005

(a)  free vector

(b)     unit vector 

(c)     null vector   

(d)    None of these

Q.6            Let  be a non-zero vector, then    is a:                                             12807006

(a)  scalar quantity

(b)     unit vector parallel to

(c)     unit vector perpendicular to

(d)    reciprocal vector

Q.7                        12807007

(a)  0             (b)                 –1

(c)     2                   (d)    1

Q.8            Mark the wrong statement. Two vectors can be:                          12807008

(a)  added     (b)                 subtracted

(c)     multiplied     (d)    divided

Q.9            If P(x, y, z) be any point in space, then   = x + y + z is called the:

12807009

(a)     position vector of O      

(b)     position vector of P

(c)     unit vector    (d)    null vector

Q.10        If  and  then                              (Board 2008)          12807010

(a)      (b)                

(c)               (d)     

Q.11        Two vectors are equal if they: 12807011

(a)  passes through the same point     

(b)     are parallel to each other

(c)     are parallel to each other and     have same direction               

(d)    have equal magnitude and have             same direction

Q.12        A scalar quantity is one that possesses only:                                  12807012

(a)  magnitude                   (b)     direction

(c)     both a and b

(d)    none of these

Q.13        If  and are parallel vectors, then                    (Board 2008)          12807013

(a)  0             (b)                 1

(c)     –1                 (d)    2

Q.14        If vectors  and  are perpendicular, then x equals:            12807014                                                     (Board 2009)

(a)  5             (b)                 4

(c)     2                   (d)    1

Q.15        If terminal point B of a vector  coincides with its initial point A, then  is known as:                                        12807015

(a)  scalar      (b)                 free vector

(c)     unit vector    (d)    null vector

Q.16        If  = , then |- | = ------------.

12807016

(a)     -                 (b)           

(c)        ||              (d)    - ||

Q.17        If 1 and  are x and
y-components of a vector, then its angle with x-axis is:                (Board 2009) 
12807017

(a)  60o          (b)                 90o

(c)     30o                (d)    45o

Q.18        If 2 and 2 are x and y-components of a vector, then its angle with x-axis is: 12807018

(Board 2009)

(a)     30o                (b)     45o

(c)     60o                (d)    90o

Q.19        If = [x, y] and = [x¢, y¢] are two vectors, then difference between two vectors are - =                          12807019

(a)  [ x - y, x¢ - y¢]             

(b)     [ x - y, x¢ - y¢]

(c)     [ x + x¢, y + y¢]       

(d)    [ x - x¢, y - y¢]

Q.20        The vector = [1, 0] is called unit vectors along:                                      12807020

(a)  x-axis      (b)                 z-axis

(c)     y-axis           

(d)    None of these

Q.21        The vector = [0, 1] is called ------- along y-axis.                                      12807021

(a)  position vector             

(b)     null vector

(c)     unit vector     

(d)    None of these

Q.22        The magnitude, length or norm of vector = [x, y, z] is || = ---------. 12807022

(a)                       

(b)    

(c)     x+ y + z

(d)   

Q.23        cosa + cosb + cosg = -----.12807023

(a)  0             (b)                 2      

(c)     1                   (d)    3

Q.24        Two vectors are said to be negative of each other if they have ----------- magnitude but ----------- direction. 12807024

(a)  same, same

(b)     opposite, same

(c)     same, opposite  

(d)    None of these

Q.25        The law of parallelogram of addition was used by Aristotle to describe the combined action of:                                     12807025

(a)  one force                     (b)     two forces

(c)     three forces 

(d)    None of these

Q.26        If  and  have same direction, then =        (Board 2005, 10)        12807026

(a)  -AB       (b)                 AB sinq

(c)     AB               (d)    AB tanq

Q.27        Let A and B be two points whose position vectors are and respectively. If a point P divides AB in the ratio p : q, then the position vector of P is given by
= -----------.                                       12807027

(a)  (b)                

(c)            (d)   

Q.28        The vector = [x, y] in R can be uniquely represented by:                   12807028

(a)  x   + y (b)                 x   - y

(c)     y   + x      (d)    y   + x

Q.29        The null or zero vector in R is
= -------.                                           12807029

(a)  [0]           (b)                 [0, 0]

(c)     [0, 0, 0]        

(d)    None of these

Q.30        Projection of vector  along is:                    (Board 2007)  12807030

(a)  a             (b)                 c

(c)     b                   (d)    a + b

Q.31        If  ×  =  ×  =  ×  = 0, then   × ( ´  ) is equal to:              12807031

(a)                

(b)     +  +

(c)                         

(d)    None of these.

Q.32        The vector = [0, 1, 0] is called
-----------
along y-axis.                       12807032

(a)  unit vector                   (b)     null vector

(c)     position vector     

(d)    None of these

Q.33        The vector = [0, 0, 1] is called
------------
along z-axis.                      12807033

(a)  unit vector                  

(b)     null vector

(c)     free vector   

(d)    None of these

Q.34        If the vectors  and  are perpendicular to each other, then the value of  is:   (Board 2008) 12807034

(a)  3             (b)                

(c)                      (d)   

Q.35        . = ------- , where q is the angle between and and lies in [0, p].    12807035

(a)  . cos q                  

(b)     || . ||

(c)     || . || cos q

(d)    None of these

Q.36        Two vectors  are collinear if  implies:   (Board 2006)           12807036

(a)  p = 0, q ¹ 0                 

(b)     p ¹ 0, q = 0

(c)     p = 0, q = 0  

(d)    p ¹ 0, q ¹ 0

Q.37        The dot product of unit vector with unit vector is:                             12807037

(a)  0             (b)                 2

(c)     1                   (d)    3

Q.38        The angle between the vectors  and  is:(Board2007) 12807038

(a)             (b)                

(c)                      (d)   

Q.39        Two non-zero vectors and are perpendicular if and only if . is equal to:

12807039

(a)     0                   (b)     2      

(c)     1                   (d)    None of these

Q.40        If q = ------------ between two vectors and , then and are perpendicular to each other.                                     12807040

(a)  0             (b)                

(c)     p                   (d)   

Q.41        The projection of along is equal to:                                   (Board 2006) 12807041

(a)          (b)                

(c)                  

(d)    None of these

Q.42        ´ =                                    12807042

(a)  0             (b)                

(c)                        (d)   

Q.43        ´ =                                    12807043

(a)  0             (b)                

(c)                        (d)   

Q.44        If and be any two vectors and
´ = 0, then:                                  12807044

(a)  = 0 or = 0             

(b)     = 0 and = 0

(c)     = 0 or ¹ 0       

(d)    ¹ 0 or = 0

Q.45        If =[x1,y1,z1] and =[x,y2,z2], then ´ = ------------------, which is known as determinant formula for ´ .     12807045

(a) 

(b)    

 (c)   

(d)    None of these

Q.46        Zero vector is perpendicular to:

(Board 2011)          12807046

(a)     every vector

(b)     unit vector only

(c)     position vector only

(d)    not any vector

Q.47        Area of parallelogram of two vectors and along two adjacent sides of parallelogram is equal to:                    12807047

(a)  ´       (b)                 | ´ |

(c)     | . |            (d)    | ´ |

Q.48        The -------------------------- is of the volume of the parallelepiped.          12807048

(a)  volume of the tetrahedron

(b)     volume of the parallelepiped

(c)     volume of the triangle

(d)    None of these

Q.49        If any two vectors of scalar triple product are equal, then its value is equal to:

(a)  0             (b)                 2       12807049

(c)     1                  

(d)    None of these

Q.50        If q is the angle between two vectors and , then q =                             12807050

(a)  cos                

(b)     cos( .)

(c)     cos

(d)    cos

Q.51        Area of triangle = ------------------ , if and are vectors along two adjacent sides of the triangle.                                    12807051

(a)  | ´ |  (b)                 | ´ |

(c)     | . |         (d)   

Q.52        A unit vector is defined as a vector whose magnitude is:                          12807052

(a)  0            

(b)     2

(c)     1                  

(d)    None of these

Q.53        A vector, whose initial point is the origin O and whose terminal point P, is called the --------------- of the point P and is written as .                              12807053

(a)  unit vector                  

(b)     null vector

(c)     position vector

(d)    None of these

Q.54        The position vector of any point in xy-plane is:                 (Board 2009) 12807054

(a)                   

(b)    

(c)    

(d)   

Q.55        If = [x, y] and = [x, y], are any two non-zero vectors in the plane, then dot product of and is . = -----. 12807055

(a)  xx- yy            

(b)     xx+ yy

(c)     x y+ xy     

(d)    x y- xy

Q.56        = -----------, where and are any vectors.                                      12807056

(a)  - .    

(b)     .

(c)     - .          

(d)    None of these

Q.57        For any three vectors , and
, . ( ´ ) is also written as:      12807057

(a)  ´ ( ´ )                  (b)     ( ´ ) .

(c)     . ( . )     (d)    . ( ´ )

Q.58        The position vector of a point
P(
-1, 2, 3) is:              (Board 2007)          12807058

(a)                     (b)    

(c)       (d)   

Q.59        If  and  are unit vectors and q is the angle between them, then the vector
 +  is a unit vector if 
q =       12807059

(a)               (b)                

(c)                      (d)   

Q.60        If q = ---------- between two vectors and , then and are collinear.            12807060

(a)  0             (b)                 1

(c)                      (d)   

Q.61        The magnitude of dot and cross products of two vectors are 6 and  respectively, the angle between the vectors is:                                       (Board 2009) 12807061

(a)  90o          (b)                 30o

(c)     60o                (d)    0o

Q.62        If q is the angle between and , then q is equal to:                                 12807062

(a)  sin                

(b)     sin

(c)     cos   

(d)    sin

Q.63        : 12807063

(Board 2008)

(a)     either  or

(b)      are parallel

(c)      are perpendicular

(d)    both  and  are nonzero

Q.64        The value of  is:   12807064

(Board 2011)

(a)     1                   (b)    

(c)     0                   (d)   

Q.65        If = [x, y, z] and = [x, y, z] are any three non-zero vectors, then .

                                    12807065

(a)     xx+ y z+ zy   

(b)     xz + yy+ zx

(c)     x y+ x y+ zz  

(d)    xx+ yy+ zz

Q.66        A constant force  acting on a body, displaces it from A to B. The work done by  is equal to:                (Board 2007)          12807066

(a)  (b)                

(c)                (d)   

Q.67        The cross product or vector product of two vectors is defined:               12807067

(a)  only in plane              

(b)     both a and c

(c)     only in space        

(d)    None of these

Q.68        If and be any two vectors, then
´ v is equal to:                                12807068

(a)  - ´    (b)                 ´

(c)     - ´         

(d)    None of these

Q.69        If  and  are coterminous edges of a tetrahedron, then volume =  12807069

(a)                     (b)    

(c)         (d)   

Q.70        The vectors , and are coplanar if and only if [      ] is equal to:          12807070

(a)  0             (b)                 2

(c)     1                   (d)    None of these

Q.71          (Board 2006)

12807071

(a)     1                   (b)     0      

(c)                  (d)   

Q.72        If l, m, n are the direction cosines of a vector , then:                                12807072

(a)  – m+ n= 1         

(b)     + m+ n= 0

(c)     + m+ n= 1   

(d)    + m– n= 0

Q.73            (Board 2007, 11,15) 12807073

(a)              (b)                

(c)     1                   (d)   

Q.74        If  = k , where k is a scalar, then:                                                    12807074

(a)  A, B, C form a triangle.

(b)     and  have the same magnitude.

(c)     A, B, C are collinear.

(d)    A, B, C are coincident.

Q.75        Sine of the angle between two vectors  and  is given by:   12807075

(a) 

(b)    

(c)    

            (d)   

Q.76        In DABC,= ,= , = ,  then:                                                          12807076

(a)  + + =             

(b)     - + =

(c)     + - =       

(d)    + - =

Q.77        Magnitude of vector is:

(Board 2014) 12807077

(a)     29                 (b)    

(c)     28                 (d)   

Q.78        :             (Board 2014) 12807078

(a)  1             (b)                 2      

(c)     0                   (d)    – 1

Q.79         equals:

                     (Board 2014,15) 12807079

(a)     0                   (b)     2      

(c)     4                   (d)    6

Q.80        Work done by a constant force F during displacement d is equal to:

(Board 2014) 12807080

(a)                  (b)               

            (c)                 (d)   

Q.81        Moment of force F about (r)  is :

(Board 2015) 12807081

            (a)   r ´  F         (b)     F ´  r                   

            (c)  r .  F           (d)   F .  r

 

 

 

 



Short Answer Questions

 


Q.1            Define Vector quantity.        12807082

Q.2            Define Scalar quantity.         12807083

Q.3            Define a position vector.       12807084

Q.4            State parallelogram law of addition of vectors.                                         12807085

Q.5            Define a Unit vector.             12807086

Q.6            Define equal vectors.             12807087

Q.7            Define a null or zero vector.  12807088

Q.8            What do you mean by negative of a vector?                                              12807089

Q.9            If O is the origin and = , find the point P when A and B are
(
-3, 7) and (1, 0) respectively.          12807090

Q.10        What is set of vectors in R? 12807091

Q.11        Let be a vector in the plane or in space and let c be a real number. Then

(i)                 || ³ 0, and || = 0 if and only if
=                                                    12807092

(ii)        |c| = |c| ||

Q.12        Let A and B be two points whose position vectors are and respectively. If a point P divides AB in the ratio p : q, then the position vector of P is given by
=                                       12807093

Q.13        Find the position vector of a point which divides the line segment joining the points C and D with position vectors  and  in the ratio 3:4.                       12807094

(Board 2009)

Q.14        Find a unit vector parallel to ?                        (Board 2009)          12807095

 

Q.15        Write a unit vector in the direction of the vector . (Board 2010) 12807096

Q.16        If = [1, - 3] and = [2, 5], then find -                                              12807097

Q.17        Find the unit vector in the direction as the vector = 2 + 6                12807098

(Board 2009)

Q.18        If = 2 + 3 + , = 4 + 6 + 2 and - 6 - 9 - 3, then find |--|

12807099

Q.19        What is set of vectors in R? 12807100

Q.20        If ABCD is a parallelogram such that the points A, B and C are respectively (- 2, - 3), (1, 4) and (0, - 5). Find the coordinates of D.                          12807101

Q.21        Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third side and half as long.                 12807102

Q.22        If u = 2i + 3 + 4k, v = -i + 3 - k and w = i + 6 + zk represents the sides of a triangle. Find the value of z.             12807103

Q.23        Use vectors, to prove that the diagonals of a parallelogram bisect each other.                           (Board 2007)          12807104

Q.24        If and be the position vectors of A and B respectively w.r.t. origin O, and C be a point on  such that = , then show that C is the mid-point of AB.            12807105

Q.25        Define direction angles.        12807106

Q.26        Find the direction cosines of the vector.                                  12807107

Q.27        Find the direction cosines of the vector        (Board 2010) 12807108

Q.28        Find the vector whose magnitude is 5 and has direction angles:                         12807109

a , b  = , g  = 

Q.29        If = 2 - 4 + 5 and

   = 4 - 3 - 4, then find .    12807110

Q.30     Find a, so that |a i + (a+1) j + 2k|=3

(Board 2008, 09) 12807111

Q.31        Define dot product of two vectors.

12807112

Q.32        If =3 - - 2 and = +2- , then find .                                                12807113

Q.33        For the vectors:  =  2– 3+ 4,

  = + 2,    = 3+ 2–         

Verify that  × ( + ) =  ×  +  ×

12807114

Q.34        Calculate the projection of  and projection of  when:                                (Board 2008)   12807115

Q.35      Find the angle between the vectors

= 2 - + and = - +   (Board 2009)

12807116

Q.36        Show that the vectors 2 - + ,         - 3 - 5 and 3 - 4 - 4 form the sides of a right triangle.                                  12807117

Q.37        Prove that cos (a - b) = cos a
cos
b + sin a sin b        (Board 2010) 12807118

Q.38        Find a scalar a so that the vectors

2 + a + 5 and 3 + + a are perpendicular. (Board 2008, 09)        12807119

Q.39        Prove that in any triangle ABC

     a = b cos C + c cos B   (Projection Law)

12807120

Q.40        Prove that in any triangle ABC 

a= b+ c- 2bc cos A (Cosine Law) 12807121

Q.41        If   +  +  = , || = 3, || = 5,

|| = 7. Find the angle between   and .

12807122

Q.42        Show that the components of a vector are the projections of that vector along , and respectively.   12807123

Q.43        Use scalar products to prove that the triangle whose vertices are A (1, 0, 1),
B (1, 1, 1) and C (1, 1, 0) is a right isosceles triangle.                                           
12807124

Q.44         Find x for which the angle between

 = x+ and  = + x is .

12807125

Q.45        If   is vector for which v .  = 0,        v.  = 0 and v .  = 0 , find vector v. 

(Board 2009) 12807126

Q.46        Define a cross product of two vectors.                                            12807127

Q.47        If   =2– 3,  = +4– 2,

Q.48        Compute the cross product:  12807129

            (2– 3+ 5) ´ (6+ 2– 3).

Q.49         Compute the cross product:
(2
– 5) ´ .                                            12807130

Q.50        Find a unit vector perpendicular to both  = + + and  = 2+ 3.        12807131

Q.51        Find a unit vector perpendicular to each of the vectors +2+2, &3–2       –4. Also calculate the sine of the angle between these vectors.              12807132

Q.52        Find a unit vector perpendicular to both  = + + and  = 2+ 3.       12807133

Q.53        Find a vector perpendicular to the two vectors  and  given the four points A (0, 2, 4), B (3, – 1, 2), C (2, 0, 1) and D (4, 2, 0)                               12807134

 

Q.54        Find a vector of magnitude 7 and perpendicular to  = 4+ 3– 6,
 = – 6
– 2+ 7                          12807135

Q.55        If = 2 + 3 + , = 4 + 6 + 2 and - 6 - 9 - 3, then show that         , , and are parallel to each other. 12807136

Q.56        If = 2  - + , then find by determinant formula ´                      12807137

Q.57        If =2 - + and = 4 +2 - , then find by determinant formula ´    12807138

Q.58        If =2 - + and = 4 +2 - , then find by determinant formula ´

12807139

Q.59  Find a and b so that 3 + 4 and a +  - 2 are parallel.  (Board 2009) 12807140

Q.60        Prove that the area of triangular region whose vertices are A(), B(), C() is  . 12807141

Q.61        Find the area of the triangle with vertices A(1,-1,1), B(2,1,-1) & C(- 1,1,2). Also find a unit vector perpendicular to plane ABC.                                              12807142

Q.62        Find area of the parallelogram  whose  vertices are P(0, 0, 0), Q(- 1, 2, 4), R(2, - 1, 4 ) and S(1, 1, 8).                    12807143

Q.63        If a, b, g are the direction angles of a vector , then show that                    (Board 2008) 12807144

Q.64        Which of the following triples can be the direction angles of a single vector.

12807145

Q.65        Let , and be vectors in the space. Then show that (+)+=+(+).    12807146

Q.66        Find a vector perpendicular to the two vectors  and  given the four points A (0, 2, 4), B (3, – 1, 2), C (2, 0, 1) and D (4, 2, 0).                              12807147

Q.67        Find a vector perpendicular to each of the vectors. = 2 + + and
= 4 + 2 -   (Board 2008, 09) 12807148

Q.68        Find the area of triangle with two adjacent sides =3+2 and =2– 4.

12807149

Q.69        Find the area enclosed by the triangle ABC whose vertices are A(0,0, 0), B(1, 1, 1) and C(0, 2, 3).                        12807150

Q.70        Find the area of a parallelogram having diagonals.                                  12807151

       = 3+ – 2 ,  = – 3+ 4

Q.71        Find the area of a parallelogram whose vertices are A(1, 3, – 2) , B(5, 1 ,7) , C(8, – 4, 11) and D(4, – 2, 2)              12807152

Q.72        Prove that:                            

(Board 2005, 09) 12807153

Q.73        If  +  +  = , show that

 ´  =  ´  =  ´       (Board 2015)12807154

Q.74        In any triangle ABC, prove that

= =   (Law of Sines) 12807155

Q.75        Show that sin (a + b) = sin a

cos b+cos a sin b                               12807156

Q.76        If  = 0 and, what do you know about      (Board 2007)

12807157

Q.77        Define a scalar triple product. 12807158

Q.78        If   = 3+5,  = 4+ 3
– 2
, = 2+5+ .Verify that: × ´ 

×  ´   =  × ´               12807159

Q.79        Find the volume of parallelepiped whose edges are    = 2– 3+ ,

= + 2,  =  2+    12807160

Q.80        Find the volume of the parallelepiped with edges                    (Board 2005) 12807161

Q.81        Find the volume of parallelepiped whose edges are =2–3+,=+2,  =  2+               12807162

Q.82        Find the volume of the parallelepiped determined by = +2 -,
= -2+3, = -7 - 4            12807163

Q.83        Compute the cross product:

(2– 5) ´ .                              12807164

Q.84        Find the value of  

(Board 2005) 12807165

Q.85        Prove that [ ]  =  0

12807166

Q.86        Prove that [] = 0

12807167

Q.87        Find the value of     12807168

(Board 2006)

Q.88         Compute the cross product:
´ (2+ 3).                                            12807169

Q.89        Find the value of × ´ 12807170

Q.90        Find the volume of the tetrahedron whose vertices are A(2,1,8), B(3, 2, 9),       C(2, 1, 4) and D(3, 3, 10).              12807171

Q.91        Find the volume of tetrahedron that has the following vertices.            

(0, 1, 2) , (5, 5, 6) , (1, 2, 1) , (3, 2, 1) 12807172

Q.92        Find the value of a, so that a + ,

+ + 3 and 2 + - 2 are coplanar.

12807173

Q.93        Do the points (4, –2, 1), (5, 1, 6),
(2, 2, –5) and (3, 5, 0) lie in a plane?
12807174

Q.94        Prove that the points whose position vectors are A(-6+3+2), B(3 - 2 + 4), C(5 + 7 + 3) and D(- 13 + 17 - ) are coplanar.                                             12807175

Q.95        Prove that four points A(-3,5, - 4),
B(
- 1, 1, 1), C( - 1, 2, 2) and D(- 3, 4, - 5) are coplanar.                                      12807176

Q.96        Show that the vectors –2+ 2,  – 2+ 3– 4 and – 3+ 5 are coplanar. 12807177

Q.97        Find the value of l which makes
+ , – 2+ and  l+ lcoplanar.                       (Board 2007) 12807178

Q.98        Find the work done in moving an object along a straight line from (5, 3, – 2) to (1, – 2, 4) in a force field given by
 =  2
+ 3×                            12807179

Q.99        Find the work done by a constant force =2+ 4, if its points of application to a body moves it from A(1, 1) to B(4, 6).

(Assume that || is measured in Newton and |d| in meters.)                                             12807180

Q.100    The constant forces 2 + 5 + 6 and --2- act on a body, which is displaced from position P(4,-3,-2) to Q(6, 1,-3). Find the total work done.                                   12807181

Q.101    Find the moment about the point M(-2, 4, -6) of the force represented by , where coordinates of points A and B are
(1, 2,
- 3) and (3, - 4, 2) respectively. 12807182

Q.102    Prove that 

(Board 2011) 12807183

Q.103    Find the moment about A(1, 1, 1) of each of the concurrent forces where P(2, 0, 1) is their point of concurrency. (Board 2009) 12807184

 

Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.