Paper Math (Ch # 1,2,3,5,8) Class: 7th Total Marks: 50

  

Subject: Math (Ch # 1,2,3,5,8)     Class: 7th      Total Marks: 50    

Part.1 

(Attempt any Ten (10) questions.) (10×2=20)

1)   If U={1,2,3……10} and A = {1,3,5,7}, Find Ac

2)  If U = {1,2,3……10} A = {2,3,5,7} then verify A´UA = U

3)  Find the positive square root of the number 53,361

4)  Find the square root of 4309776 by the Division method.


5)  Reduce the following rational expression to the lowest forms



6)  Simplify the Rational number.

7)  Subtract p4 - 2p3 - 3p2 - 4p - 5 From - p4 + 5p3 + 4p2 + 3p +2

8)          Add (- 3a2 - 5ab + 2b2) and ( 7a2 + 2ab – b2 )

9)    Simplify ( x2 )4 ÷ ( x3) 2

10)          Simplify: ( a2 – ab + b2 ) (a + b)

11)     Simplify ( 4a3 – 10a2 + 6a  ) ÷ ( 2a)

12)          Divide the first term by the second.   a4b3 , - a2b


Part 2; 

Long Questions (Attempt Any 5 Q.S), Marks = 30


1.   If A={a,c,e,g},B={a,b,c,d} and C={b,d,f,h} then verify

AU(B U C)= (A U B) U C

2.  Find the smallest number by which 19,845 must be divided in

 order to become a perfect square.

3.  Simplify z2(x2 -y2 ) + x2( y2 – z2 ) + y2 (z2 – x2 )


4.  If X= 4a+5b, Y= -3b+6a+1, Z= 2a+3b-2,Find X+Y-Z


5.  Simplify [(x2+2x-1)(x-1)] + [(x2-2x+1)(x+1)] + 2x(x-1). 

Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.